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ARTICLES 
Kirkman's Schoolgirls Wearing Hats and 

Walking through Fields of Numbers 

F ifteen young lad ies at school 

EZRA BROWN 
Virginia Polytech nic I nstitute and State University 

B lacksbu rg, VA 24061 
brown@math .vt.edu 

KEITH E. MELLINGER 
University of Mary Washington 

Fredericksb u rg, VA 22401 
kmel ling® u mw.edu 

Imagine fifteen young ladies at the Emmy Noether Boarding School-Anita, Barb, 
Carol, Doris, Ellen, Fran, Gail, Helen, Ivy, Julia, Kali, Lori, Mary, Noel, and Olive. 
Every day, they walk to school in the Official ENBS Formation, namely, in five rows 
of three each. One of the ENBS rules is that during the walk, a student may only talk 
with the other students in her row of three. These fifteen are all good friends and like 
to talk with each other-and they are all mathematically inclined. One day Julia says, 
"I wonder if it's possible for us to walk to school in the Official Formation in such a 
way that we all have a chance to talk with each other at least once a week?" "But that 
means nobody walks with anybody else in a line more than once a week," observes 
Anita. "I' ll bet we can do that," concludes Lori. "Let's get to work." And what they 
came up with is the schedule in TABLE 1 .  

TAB L E  1 :  Walking to school 

MON TUE WED THU FRI SAT SUN 
a,b, e a, c, f a,d,h a,g,k a,j,m a,n,o a, i, I 
c, I, o b,m,o b,c,g b, h, I b, f,k b, d, i b,j,n 

d, f,m d,g,n e,j,o c, d, j c, i, n c, e,k c,h,m 
g, i, j e, h, i f, I, n e,m,n d, e, l f,h,j d,k,o 
h,k,n j, k, l i, k, m f, i, 0 g,h,o g,l,m e, f, g 

TABLE 1 was probably what T. P. Kirkman had in mind when he posed the Fifteen 
Schoolgirls question in 1 850. Appearing in the unlikely-sounding Lady's and Gentle
men's Diary [15] , it reads as follows: 

Fifteen young ladies of a school walk out three abreast for seven days in succes
sion: it is required to arrange them daily so that no two shall walk abreast more 
than once. 

Kirkman's publication of this problem and solution [15, 16] is one of the starting 
points for what has become the vast modern field of combinatorial design theory. Its 

3 
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poser, Thomas Pennyngton Kirkman (1 806-1 895), i s  one of the more intriguing fig
ures in the history of mathematics. He published his first mathematical paper when he 
was 40, and was the first to describe many structures in discrete mathematics. Among 
these are block designs, which form the basis for the statistical design of experiments ; 
bipartite graphs, which are essential for such problems as classroom scheduling and 
medical school admissions; and Hamiltonian circuits, which are at the heart of the fa
mous Traveling Salesman Problem. (Biggs [2] gives more details about Kirkman's life 
and work.) For these achievements, combinatorialists regard him as the "Father of De
sign Theory"-yet his fame outside the field rests entirely on the Schoolgirls Problem 
and his solution. 

This story is about the very problem that made Kirkman famous. His solu
tion is an example of a resolvable ( 1 5 ,  35 ,  7, 3 , I)-design, and we begin by ex
plaining what those words and numbers mean. We describe how one of us found 
such a design by looking in a most unlikely place: the algebraic number field 
K = Ql(.J2, ,J3, v's, ,./7). This proves to be a particularly fertile field in which 
several other block designs grow. We talk about spreads and packings in finite geome
tries, how a particular packing in the geometry PG(3 , 2) answers Kirkman's question, 
and how the PG(3 , 2) design is really the same as the number field design. Finally, 
we show how our design is a solution to a certain problem in recreational mathematics 
called the Fifteen Hats Problem. 

We begin by talking about block designs. 

Block designs and Kirkman Tr i ple Systems 

Design theory began with Euler's studies of Latin squares in the 1 8th century, inter
est in which was recently rekindled with the world-wide popularity of Sudoku. Many 
decades after their invention by Kirkman, block designs appeared in connection with 
R. A. Fisher's work [10, 11] on the statistical design of agricultural experiments, and 
the first comprehensive mathematical study of the field was due to R. C. Bose [4] . More 
recently, they have found applications in coding theory, cryptography, network design, 
scheduling, communication theory, and computer science. Finally, designs have al
ways appealed to mathematicians because of their elegance, beauty, high degree of 
symmetry, and connections with many other fields of mathematics [5] . 

A balanced incomplete block design with parameters v, b, r ,  k, and A is a collection 
B of b subsets (or blocks) of a v-element set V of objects (or varieties) such that each 
block contains k varieties, each variety appears in r blocks and each pair of distinct 
varieties appears together in A blocks. Such a design is also called a (v, b , r, k , A)
design. We say a design like this is incomplete if k < v. From a combinatorial point of 
view, complete designs are not very interesting. However, statisticians do use them to 
design experiments . 

The five parameters in these designs are not independent. Since there are b blocks, 
each of size k, there are bk occurrences of varieties in the design. On the other hand, 
there are v varieties, each occurring in r blocks, and so a total of vr varieties appear 
in the design. Hence bk = vr . A similar counting argument shows that r (k - 1 )  = 
A(v - 1). Hence 

A(v - 1 )  
r =  

k - 1  b 
AV(v - 1 )  and = . 
k (k - 1 )  

Because of these relations, such a design i s  frequently called a (v, k, A)-design. (There 
are more details about block designs in [5] . )  
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Given a block design with varieties x1 , • • •  , xv and blocks B1 , • • •  , Bb, an efficient 
way to represent it is by its incidence matrix. This is a b x v matrix M = [mij ] ,  where 
mij = I if Xj E B; and mij = 0 otherwise. 

A reading of the Kirkman Schoolgirls Problem reveals that he first asks for an ar
rangement of I5 schoolgirls into sets of size three such that each pair of girls is present 
in at most one of these triples. There are five triples for each of seven days, making 35 
triples in all. Moreover, each girl appears in just one triple each day, and over seven 
days, each girl would thus appear with each other girl exactly once. We conclude that 
Kirkman is asking for a way to arrange the girls into a ( I5 ,  3 ,  I) -design. (The inci
dence matrix for Kirkman's design will reappear when we ask the schoolgirls to wear 
hats . ) 

But there is more: he asks for a way to arrange the b = 35 triples into seven days of 
five triples each, so that each girl appears in exactly one triple each day. Such a design, 
whose b blocks can be arranged into r parallel classes of n = v j k blocks each such 
that each variety appears exactly once in each class, is called resolvable . For such a 
design to exist, v must be a multiple of k. In Kirkman's honor, a resolvable (3n, 3 ,  I)
design is called a Kirkman Triple System. (A (v, 3 ,  I) -design is called a Steiner Triple 
System, despite the fact that Kirkman described them six years before Jakob Steiner's 
publication on the subject-but that's another story.) 

Do Kirkman Triple Systems exist? Yes, they do. The smallest possibility has v = 3 ,  
with exactly one block and one parallel class, but the smallest nontrivial case has v = 
9. Construction begins with the magic square of order 3 ,  that familiar arrangement of 
the numbers I through 9 into a 3 x 3 grid such that the triples of numbers in each 
row, each column and on the two main diagonals add up to I5 . The three rows, three 
columns, three extended diagonals parallel to the principal diagonal, and three more 
parallel to the principal contrary diagonal form the four parallel classes of a resolvable 
(9, 3, I)-design. The following picture tells the tale, with the magic square on the left 
and the four parallel classes of the resolvable (9, 3, I) -design on the right: 

8 I 6 
{ 1 , 6, 8 }  {3 ,  5 ,  7 }  {2, 4, 9 }  

3 5 7 
{ I, 5 , 9} {2, 6, 7 }  {3 ,  4, 8 }  

4 9 2 
{ I, 4, 7 }  {2 ,  5 ,  8 }  {3 ,  6, 9 }  
{ 1 ,  2, 3 }  {4 ,  5 ,  6} {7 , 8 ,  9 } 

The next smallest case has v = I5, which is the design Kirkman sought in his query; 
where do we look? If we could find a structure containing fifteen objects arranged in 
thirty-five sets, with three objects per set, that would be a place to start. It happens that 
there are such structures, and we find one of them in the world of algebraic number 
theory-specifically, in the number field K = Q(-J2, .J3, -JS, .fi). The field K con
tains several interesting designs, and we' ll talk about them, but first we supply some 
background about this area of mathematics. 

K = tQ(.J2, -J), -vis, y'?) and the des igns i t  conta ins 

Evariste Galois ( 1 8 1 1-I832) described relations involving the roots of polynomials , 
number fields, and finite groups, now known as Galois theory. One basic idea is that 
if p (x) is a polynomial with rational coefficients, then there is a smallest subfield of 
the complex numbers <C containing all the roots of p (x ) .  This is the splitting field of 
p over Q. If a , b , ... E <C, we write Q(a , b , . . .  ) to mean the smallest subfield of <C 
containing Q and a , b , . . . .  For example, the splitting field of the polynomial p (x) = 
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(x2 - 2)(x2 - 3 ) (x2 - 5 )  i s  the field Q(,.,fi, ./3, .J5). Now it i s  a fact that Q(a , b , . . .  ) 
is a vector space over Q, and the degree of Q(a, b , . . .  ) over Q is the dimension of this 
vector space. These splitting fields have a good bit of internal structure, which we 

illustrate with the field Q( ,J2, ./3, -v'?), described in [5] . 
Now by definition, the biquadratic (degree-4) field Q(,.,fi, ./3) contains the two 

elements ,J2 and ./3, and since it is a field, it also contains ,.,fi./3 = ../6. Hence 
Q(,.,fi, ./3) also contains three quadratic (degree-2) subfields: Q(,.,fi), Q(./3) , and 
Q(../6) . A similar argument shows that Q(../6, .JiO) contains .Jl5 = ../6.Ji0/2, 
and so it also contains the three quadratic subfields Q(../6), Q(.JTI)), and Q(.JI5) .  
In the same vein, one can show that Q (  ,J2, ./3, .J5) contains seven quadratic sub
fields Q(../d) ,  for d = 2, 3, 5, 6, 1 0, 1 5 ,  and 30, and seven biquadratic subfields 
Q(.J(i;, ../(:l;). Not only does each biquadratic subfield contain three quadratic sub
fields, but each quadratic is contained in three biquadratics, and in [5] , these subfields 
of Q(,.,fi, ./3, .J5) are shown to form a (7, 7, 3, 3, I )-design with the biquadratic 
fields as the blocks and the quadratic fields as the varieties. Such a design, in which 
b = v and r = k, is called a symmetric design, and we will encounter some more 
symmetric designs later in this section. 

We now tum to the polynomial p(x)  = (x2 - 2) (x2 - 3) (x2 - 5) (x2 - 7) , whose 
splitting field is the degree- I 6  field K = Q(,.,fi, ./3, .J5, .../7), the smallest sub
field of the complex numbers containing Q(../d) for d = 2, 3, 5, and 7. Now let 
S = {2, 3, 5, 6, 7, 1 0, I4 ,  I 5 ,  2 I ,  30, 35, 42, 70, 105 ,  2 10} .  Then K contains the 15 
quadratic subfields Q( ../d) for d E S. Moreover, each pair of these quadratics is 
contained in a unique biquadratic subfield of K, and each biquadratic contains three 
quadratics .  A counting argument shows that K contains 35 biquadratic subfields 
Q(.J{l;, ../(:l;), and it is straightforward to show that each quadratic is contained in 
seven biquadratics . 

Now consider the block design with the I 5  quadratic subfields of K as varieties and 
the 35 biquadratic subfields of K as blocks. Our work in the previous paragraph shows 
that these form a block design with v = I 5 ,  b = 35, r = 7, k = 3, and).. = I ,  that is, 
a ( I 5 ,  3, I)-design, which we call K S for short. But is K S resolvable? 

In fact, it is, and TABLE 2 shows the seven columns that are the seven parallel 
classes . The three numbers in each of the 35 cells in this table determine a block, 
that is, one of the 35 biquadratic subfields of K. We began by placing the seven bi
quadratic subfields containing Q( ,.,fi) in separate classes across the top row and pro
ceeded, mainly by trial and error, to arrange the thirty-five blocks in seven parallel 
classes. The end result is a resolvable ( 1 5 ,  3, I ) -design-in short, a solution to Kirk
man's Schoolgirls problem. 

But that is not all .  The field K also contains another resolvable ( 15,  3, I )  design as 
well as two other types of designs .  We construct the other Kirkman design as follows. 

TAB L E  2: The Kirkman design in  IQ(v'2, ./3, ../5, ./7) 
MON TUE WED THU FRI SAT SUN 
2,3,6 2, 5,10 2, 7, 14 2,15,30 2,21,42 2,35, 70 2, 105,210 

5,21,105 3,70,210 3,5, 15 3,14,42 3, 35, 105 3, 7,21 3, 10,30 

7, 30,210 6,14,21 6,35,210 5,7,35 5,6,30 5, 42,210 5, 14, 70 

10,14,35 7, 15, 105 10, 42, 105 6, 70, 105 7, 10,70 6, 10, 15 6, 7,42 

15,42, 70 30,35,42 21,30, 70 10,21,210 14, 15,210 14, 30, 105 15,21,35 



VO L.  82,  NO. 1 ,  F E B R U ARY 2 009 7 
The blocks are the 35 biquadratic subfields of K, and the varieties are the 1 5  octic 
(degree-8) subfields of K, which we number a through o as in TABLE 3 .  Notice that 
a is the subfield Q(.J2, .J3 . .J5), with which we began this section. But in a reversal 
of the previous construction, a variety (octic field) is a member of those blocks (bi
quadratic fields) that it contains as a sub.field. That is, "contains" means "is a subfield 
of' ' in this context. Thus, the "block" Q( .J2I, .J35) "contains" the three "varieties" 
d , o and k, as shown in TABLE 3 .  

I t  is straightforward to show that each of  the 35 biquadratic subfields of  K is a 
subfield of exactly three of these octic fields, each octic contains seven biquadratic 
subfields, and each pair of biquadratics are subfields of a unique octic. Thus, we have 
another ( 1 5 ,  3 ,  1 )  -design, which we call K S*. 

Is K S* resolvable? Yes, it is, and to see this , we look at TABLE 2 again. In it, each 
biquadratic is designated by the triple of quadratics it contains. If we replace each 
biquadratic in TABLE 2 by the triple of octics that contain it, we are led to TABLE 1 ,  
the arrangement found by the fifteen ladies at the ENBS . 

The field K contains fifteen octic subfields, and each of these contains seven 
quadratic subfields. It turns out that each quadratic appears in seven octics, and that 
each pair of quadratics appear together in exactly three octics. This gives us a sym
metric ( 1 5 ,  7, 3)-design 0 Q with the quadratics as varieties and the octics as blocks . 
Each row of TABLE 3 begins with a letter referring to an octic field, followed by 
seven numbers d1 , • • •  , d7; these are the values of d for which Q(.J(i) is contained in 
that octic field. For example, line l refers to the octic field L = Q(.J3, vitO, .JI4). It 
contains the seven quadratic subfields Q(y'r) for r = 3, 1 0, 14, 30, 35 , 42, and 105 .  

Now, the elements of the blocks i n  TABLE 3 can themselves b e  arranged into block 
designs. For each of the 1 5  octic subfields of K contains 7 biquadratic subfields (the 

TAB L E  3: The (1 5, 7, 3)-design OQ in 

IQ( ../i, ../3, � . ./7) 
Octic Field Contains IQ( ,.[d) for these d 

a 2,3,5,6, 10,15,30 

b 2,3, 7,6, 14,21,42 

c 2,5, 7, 10, 14,35, 70 

d 3,5, 7, 15,21,35,105 

e 2,3,6,35,70, 105,210 

f 2,5, 10,21,42,105,210 

g 2,7, 14, 15,30,105,210 

h 3,5, 14, 15,42, 70,210 

i 3, 7, 10,21,30, 70,210 

j 5,6, 7,30,35,42,210 

k 2, 15,21,30,35,42, 70 

l 3, 10, 14,30,35,42,105 

m 5,6, 14,21,30, 70,105 

n 6, 7, 10, 15,42, 70,105 

0 6, 10, 14,15,21,35,210 
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blocks) as well as 7 quadratic subfields (the varieties). Each biquadratic contains 3 
quadratics , each quadratic is contained in 3 biquadratics, and each pair of quadratics 
lie in a unique biquadratic. Thus, each block is a triple of quadratics, and we conclude 
that K contains fifteen symmetric (7, 3, I) -designs. Continuing with line l, we list the 
triples of the (7 , 3, 1 ) -design contained in the octic field L here : 

10 ,  1 4, 35 ; 30, 35 ,  42; 10 , 42, 1 05 ; 3 ,  14 , 42; 3 ,  35 , 105 ; 14 , 30, 1 05 ;  3 ,  1 0, 30 

As an exercise, find these seven triples in TABLE 2, and observe that they occur in 
different columns. 

Finally, if D is a symmetric design, then the dual design D* of D is obtained from 
D by a formal exchange of blocks and varieties . Thus, if the variety x belongs to the 
block B in D, then the variety B belongs to the block x in D*. In this way, we obtain 
the dual OQ* of the ( 1 5 ,  7, 3) symmetric design OQ depicted in TABLE 3, again 
by a formal exchange of blocks and designs. We note that this construction fails for 
nonsymmetric designs, that is designs in which v i=- b. 

Exchanging the roles of blocks and varieties in a block design is analogous to ex
changing the roles of points and lines in projective geometry. To see this more clearly, 
we need to pass to a geometric description of K S. So, let's talk about finite projective 
geometries and spreads. 

Spreads in PG(3, 2) and the geometry of Kirkman 

One very elegant way to generate a solution to the Kirkman Schoolgirls problem in
volves a nice partitioning and packing problem in finite projective geometry. Hun
dreds of years ago, projective spaces arose as extensions of the familiar real Euclidean 
spaces. The essential difference between Euclidean and projective spaces is that in 
projective spaces every pair of lines in a plane must intersect-there is no notion of 
parallelism. This lack of parallelism provides a nice duality to projective planes: Ev
ery two distinct points determine a unique line and every two distinct lines meet in a 
unique point. Lines can be skew, but this requires them to be noncoplanar. We will see 
examples of skew lines shortly since we will be mostly interested in finite projective 
3-space, a place where lines can indeed be skew. But first let's talk more about finite 
projective geometry. 

Just as with Euclidean geometry, there is a way to assign coordinates to the points of 
a finite projective space. We do this using a finite field (rather than the more familiar 
fields � or Q). The classic example of a finite field is the set of integers {0, 1 ,  . . .  , 
p - 1 } , with all arithmetic performed modulo p. But it can be shown that finite fields 
exist of any size that is a power of a prime. Typically, we use q = pk for a power of a 
prime and we let G F(q) denote the finite field with q elements . 

The technique for coordinatizing projective spaces is fairly easy and is a straight
forward extension of the standard linear algebra techniques that we learn using real 
numbers. To construct a 3-dimensional projective space, we start with a 4-dimensional 
vector space over the finite field with q elements , GF(q) . The lattice of subspaces 
then gives us the geometry. That is, !-dimensional subspaces represent points, 2-
dimensional subspaces represent lines, and so on. This is the unique finite projective 
space of dimension 3 and order q, denoted by PG(3 , q) . Notice that we have a repre
sentation problem for points: Since points are defined as }-dimensional subspaces, all 
nonzero vectors in a particular !-dimensional subspace represent the same projective 
point. This leads to the concept of homogeneous coordinates for projective spaces : 
When we use the nonzero vector (w, x, y, z) to represent a projective point, it is un
derstood that any nonzero scalar multiple of this vector represents the same projective 
point. (The formalities involve equivalence classes of vectors . ) 
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Now that we have a finite set and a nice representation, we can use standard count

ing techniques to determine some properties of our space. There are q4 - 1 nonzero 
vectors in the entire vector space, and any nonzero scalar multiple of a nonzero vec
tor gives the same projective point. Hence, the total number of points of P G (3 , q) is 
given by (q4 - 1 ) / (q - 1) = q3 + q2 + q + 1 .  Similarly counting the number of 1 -
dimensional subspaces contained in a 2-dimensiona1 subspace, we see that every line 
contains q + 1 points. Now consider the case when q = 2. Here the finite projective 
space PG(3 , 2) contains 15 points and every line contains 3 points. Sound familiar? 

A solution to Kirkman's famous problem could be obtained with lines of PG(3 , 2) . 
A solution would go something like this . First you would have to partition the projec
tive space into lines. Such a partition of the points of PG(3 , q) into lines is called a 
spread by finite geometers. A spread in our setting would contain 5 disjoint lines (each 
containing 3 points) .  The points of our projective space would correspond to the girls, 
and the lines of our spread would correspond to the groups of girls walking together 
on the first day. To find the groups for the second day would require us to find a second 
spread such that no line from the first spread gets reused in the second spread. Then 
we continue in this fashion until we get 7 pairwise disjoint spreads (or 7 days ' worth 
of partitions) . Seems possible, I suppose. But are we satisfying the condition that no 
two girls walk together more than once? If this were not the case, then we would have 
two points of the projective space lying on two different lines. Recall that this violates 
the axiom for projective geometry requiring that every two distinct points determine a 
unique line. So, the geometric model actually guarantees us the desired property. 

To solve Kirkman's problem, we would need 7 pairwise disjoint spreads (no two 
sharing a common line) . Hence, we would need to use 35 different lines of the pro
jective space. Do we have enough? Just as we counted points , we can easily count 
lines. Any two independent vectors would determine a 2-dimensional subspace. There 
are q4 - 1 choices for a first vector and then q4 - q choices for a second vector that 
is independent from the first. Any particular 2-dimensional subspace will be counted 
by any pair of independent vectors in that subspace. Hence, the total number of 2-
dimensional subspaces (that is, the number of lines of P G (3 , q) ) is 

(q4 - 1 ) (q4 - q) 
= ( 2 + 1 ) (  2 + + 1 ) .  

(q2 - I ) (q2 - q) 
q q q 

Plugging in q = 2 gives us 35 , precisely the number of lines we need. 
Now, let 's get back to the Kirkman solution in PG(3 , 2) . In geometric terms, we are 

trying to partition the lines of PG(3 , 2) into 7 disjoint spreads. Such a partition of lines 
into spreads is known as a packing. It is fairly well-known that spreads and packings 
exist. Hirschfeld [13] gives details about how to actually construct such packings and 
even shows that they exist for projective 3-spaces of any order (that is, any value of 
q). The trick is to model PG(3 , q) not using a vector space, but rather using the finite 
field GF(q4) .  Then, subfields isomorphic to GF(q2) correspond to lines and some 
algebra can be used to show the existence of the spreads that we need. In general, 
the projective space PG(3 , q) contains (q2 + 1 ) (q2 + q + 1 )  lines and a packing of 
PG(3 , q) is comprised of q2 + q + 1 spreads, each of size q2 + 1 .  Hence, packings of 
PG(3 , q) actually give a solution to a generalized Kirkman Schoolgirls problem: 

If (q2 + 1 ) (q + 1 )  schoolgirls go walking each day in q2 + 1 rows of q + 1 ,  they 
can walk for q2 + q + 1 days so that each girl has walked in the same row as has 
every other girl and hence with no girl twice. 

Incidentally, finite geometry provides a wealth of examples of designs , and Kirkman 
designs are no exception. By generalizing the spreads and packings described above, 
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one can construct resolvable (3n , 3 ,  1 )  designs for many values of n simply by varying 
the dimension of the space you work in. A very thorough, albeit technical, description 
of these methods can be found in the book by Hirschfeld [13]. 

Let us represent the nonzero 4-bit strings (the projective points of PG(3 , 2)) by 
the decimal integers they represent: 1 = 0001 , 2  = 0010 ,  ... , 10 = 1 0 10, . . .  , 1 5  = 
1 1 1 1. Then TABLE 4 shows a packing of the lines of PG(3 , 2) into 7 disjoint spreads, 
a solution to Kirkman's Schoolgirls Problem. 

TA B L E  4: The Kirkman design as a spread in PG(3, 2) 

MON TUE WED THU FRI SAT SUN 

I, 2, 3 1, 4, 5 2,4,6 1, 6, 7 3,4, 7 3,5,6 2,5, 7 

4, 10, 14 2, 13, 15 1, 8, 9 2, 9, 11 2, 12, 14 2,8, 10 1, 14, 15 

7, 8, 15 3,9, 10 3, 12, 15 4,8, 12 1, 10, 11 4, 11, 15 4,9, 13 

5,9, 12 6,8, 14 5, 11, 14 3, 13, 14 5, 8, 13 I, 12, 13 3, 8, II 
6, 11, 13 7, 11, 12 7, 10, 13 5, 10, 15 6,9, 15 7,9, 14 6, 10, 12 

Notice that the seven blocks in the first row make up a (7, 3 ,  I) -design. This is 
no coincidence. Since lines of a spread cannot intersect, and every pair of lines in a 
projective plane must intersect, it follows that the set of lines of a PG(2, 2) inside 
our PG(3, 2) must all lie in different spreads (that is, different columns of our table). 
The points across the top lie in the projective plane (isomorphic to PG(2, 2) ) that 
is obtained by looking at all projective points of PG(3 , 2) whose first homogeneous 
coordinate is 0. You can verify that the set of such vectors forms a 3-dimensional vector 
space over GF(2) and therefore serves as a model for the projective plane PG(2, 2). 
As an exercise, consider the projective plane (isomorphic to PG(2, 2) ) obtained from 
the points whose last homogeneous coordinate is 0. These points are represented by 
the even integers. Verify that each of the lines contained in this plane lies in a different 
column of our table. In other words, each column contains exactly one entry composed 
of all even integers . 

Now, we have two ways to describe Kirkman's Fifteen Young Ladies : the spreads 
in PG(3, 2) and the subfields of an algebraic number field. By a K S ( 1 5) ,  we 
mean a resolvable ( 1 5 ,  3 ,  1 )  block design. As we have seen, the quadratic (vari
eties) and biquadratic (blocks) subfields of the degree- 1 6  algebraic number field 
K = Q( ./2, ../3, ./5, -J7) form a K S ( 1 5). 

But wait-there's more. The points in PG(3 , 2) are 4-digit bit strings. There is 
a one-to-one correspondence (prove it ! )  between the points in PG(3 , 2) and the 
quadratic subfields of K, defined by mapping the nonzero bit string b1 b2b3b4 to the 
quadratic subfield Q(.J2b1 3h25h37h4) .  Let's see how this correspondence acts on a 
KS(l5) design. 

A set of three points in PG(3 , 2) , such as {0 1 10, 1 10 1 , 10 1 1 } ,  are collinear pro
vided their vector sum over the 2-element field G F (2) is the zero vector. This fol
lows from the fact that projective lines are defined as 2-dimensional subspaces. Recall 
that a "line" or "block" in the extension-field version of the K S ( 1 5) design is a set 
of three quadratic subfields {Q(.JP) , Q(_Jq}, Q(.Jr")} that belong to the same bi
quadratic subfield of K. We would like to find conditions on p, q, and r that force 
this to occur. Necessarily, we would require .Jr E Q(.jP, ,fij), .jP E Q(,fii, .Jr") , 
and ,fii E Q(..[P, .Jr") . In other words, the biquadratic subfields determined by any 
two of {p , q, r} are all the same. This boils down to a fairly simple condition on 
the variables . The condition that the subfields {Q(.jP) , Q(_Jq}, Q(.Jr")} lie in a com
mon biquadratic subfield is that p, q, and r are nonsquare integers whose product 
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is a square. For instance, the three quadratic subfields {Q(..Jf5) , Q(.J42) , Q(-J70)} 
lie in a unique biquadratic subfield since 1 5  · 42 · 70 = 44 1 00 = 2 1 02 is a square. A 
little algebra shows that three 4-dimensional vectors {a , b , c } representing points in 
PG(3, 2) sum to zero mod 2 if and only if their corresponding quadratic subfields 
{Q(.JP) , Q(Jtj) , Q(y'r)} have the property that pqr is a square. To see this, note that 
a vector sum of zero for a E9 b E9 c translates to an even number of I s  summed in each 
of the four coordinate positions. In the field model, this means that each exponent of 
2b1 3b2 5b3 7b4 is even and so the entire product is a square. Thus, the correspondence 
preserves lines, and so is an isomorphism between the set of 35 lines of a K S( IS) in 
PG(3, 2) and its corresponding K S( IS) in K.  

At this point you probably will not be surprised that Kirkman's famous design arises 
in two more seemingly unrelated areas of mathematics, namely recreational mathemat
ics and the very applied area of coding theory. So, let's talk about Kirkman's  design 
and how it relates to a certain guessing game involving fifteen players wearing hats. 

Fifteen schoolgirls, fifteen hats 

Here is a famous problem in recreational mathematics that we' ll call the Three Hats 
Game. Three players enter a room and a maroon or orange hat is placed on each per
son's head. The color of each hat is determined by a coin toss, with the outcome of one 
coin toss having no effect on the others. Each person can see the other players ' hats 
but not his own. 

No communication of any sort is allowed, except for an initial strategy session 
before the game begins. Once players have had a chance to look at the other hats, 
they must simultaneously guess the color of their own hats or pass. The group shares 
a hypothetical $3 million prize if at least one player guesses correctly and no players 
guess incorrectly. The problem is to find a strategy whereby the group's chance of 
winning exceeds 50%. 

Mathematicians credit the Three Hats Game to Todd Ebert, a computer scientist, 
who introduced it in his Ph.D. thesis in 1 998 [9] . The problem was then popularized 
by an April 2001 article in the New York Times [18] . 

The winning strategy is as follows. Each player looks at the other two hats . A player 
who sees two of the same color guesses the missing color. A player who sees two 
different colors passes. Now there are eight ways of distributing hats of two colors 
among three distinct players. In six of these ways, two players see hats of different 
colors and they pass; the third player sees two hats of the same color, guesses the 
missing color-and that turns out to be a win. In the other two cases, all hats are the 
same color; each player guesses the missing color, and all three are wrong. Hence, the 
strategy works in six of eight cases, and so the three players will win 3 j 4 of the time. 
This comes as a surprise to most readers. 

We will see how this technique generalizes, with increasingly better odds, to any 
number of players of the form 2n - 1 for n ::=: 3 .  In particular, it generalizes to a situ
ation where there are 24 - 1 = 1 5 players-maybe even fifteen schoolgirls-and the 
analysis involves a mathematical middle-man known as a Hamming Code. So, before 
we describe the general technique, let's talk about error-correcting codes. 

Some coding theory Mathematical schemes to deal with signal errors first appeared 
in the 1940s in the work of several researchers, including Claude Shannon, Richard 
Hamming, and Marcel Golay. These researchers saw the need for something that 
would automatically detect and correct errors in signal transmissions across noisy 
channels. What they came up with was a new branch of mathematics called coding 
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theory-specifically, the study of error-detecting and error-correcting codes. They 
modeled these signals as sets of n-long strings called blocks, to be taken from a fixed 
alphabet of size q ;  a particular set of such blocks, or codewords, is called a q-ary code 
of length n .  If q is a prime number, then a q-ary code of length n is called linear if 
the code words form a subspace of z;, the n-dimensional vector space over Zq , the 
integers mod q .  A basis for such a linear code is called a generating set for the code. 
One way to describe such a set is with a generator matrix, which is a q-ary matrix of 
n columns whose rows generate the code. 

To detect errors means to determine that a codeword was incorrectly received; to 
correct errors means to determine the right codeword in case it was incorrectly re
ceived. Just how this correction happens will vary from code to code. 

The fact that d errors in transmission change d characters in a block gives rise to the 
idea of distance between blocks . If v and w are n-blocks, then the (Hamming) distance 
D(v, w) is the number of positions in which v and w differ. Thus, D( 1 1001 , 1 0 10 1 )  = 
2 and D( 1 10 1000, 00 1 1 0 10) = 4. If I send the block v and you receive the block w, 
then D(v, w) errors occurred while sending v. 

It fol lows that if the words in a code are all "far apart" in the Hamming distance 
sense, they can detect errors. Even better, if we assume that only a few errors occur, 
then we can sometimes change the received block to the correct codeword. Let us now 
look at an example of an error-correction scheme. 

One way to transmit bits is to send each bit three times, so that our only codewords 
are 000 and 1 1 1 . If you receive 0 10, then it is most likely that I sent 000 and so 
the intended message was 0; this is the triplication or majority-vote code and will 
successfully correct a single error. Thus, a codeword of length n contains a certain 
number k of message bits, and the other n - k check bits are used for error detection 
and correction. Such a code is called an (n , k) code: the triplication code is a (3, 1 )  
code. 

The minimum distance of a code is the smallest distance between its codewords. 
This minimum distance determines the code's error detection and correction features. 
(Exercise: Show that a code with minimum distance 5 will detect up to 4 errors and 
correct up to 2. You can then show that a code with minimum distance d will detect 
up to d- 1 errors and correct up to L(d - 1 )/2J errors .) For an (n , k) code to be 
efficient, the ratio k j n should be as large as possible, consistent with its error detec
tion and correction capabilities. Maximum efficiency in an (n , k) m-error correcting 
code occurs when it can correct up to m errors, and no others . Such a code is called 
perfect. 

Hamming's first error correcting scheme was a perfect 1 -error correcting code of 
length seven with four message bits, three check bits, and minimum distance 3 ;  hence, 
it could correct all errors in which a single bit was received incorrectly. Golay extended 
Hamming's work and constructed a family of (2n - 1 ,  2n - 1 - n) linear binary perfect 
1-error correcting codes of minimum distance 3 for all n :::: 2. These are now known 
as the Hamming codes, and they include both Hamming's original (7, 4) code and the 
(3 , 1 )  triplication code. 

Here is the connection between the Kirkman Schoolgirls Problem and Hamming 
codes. As we have seen, the 35 triples in TABLE 4 are the 35 blocks of a resolvable 
( 1 5 ,  3, I) -design, and the numbers 1 ,  . . .  , 1 5  are the varieties . The incidence matrix 
M for this design is a 35 x 1 5  matrix of zeros and ones. It is straightforward to show 
that the row space of M -that is, the vector space generated by the rows of M -is an 
1 1 -dimensional subspace of Zi5 , and that this subspace is a ( 1 5 ,  1 1 ) Hamming code. 

We now show how Hamming codes are the keys to understanding the winning strat
egy for the Three Hats Game, and how the Kirkman Schoolgirls problem is linked to 
the Fifteen Hats Game. 
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Fifteen schoolgirls, fifteen hats: A solution. Go back and look at the Three Hats 
Game again. Notice that the triplication code contains two codewords and six blocks 
with errors. The six erroneous blocks correspond to the six winning hat placements for 
the three players, and the two codewords correspond to the two losing hat placements. 
As we see in what follows, that is not an accident. 

Here is how a solution to the Kirkman Schoolgirls problem leads to a solution to 
the Fifteen Hats Game in which the probability of winning is much greater than 50%: 
in fact, it is well over 90%. 

First, we number the girls from 1 to 1 5  in the same way that they are labeled in 
TABLE 4. We think of these as 4-digit nonzero binary numbers . 

Now, suppose that the girls enter the room, each obtaining a hat, and circle up in 
order 1 through 1 5 .  Each player now does the following. She looks at the numbers 
corresponding to each girl wearing a maroon hat, and she computes the correspond
ing vector sum. For example, if girls 1 ,  3, 5, 8, 10, 1 2, and 14 are wearing maroon 
hats, then girl 4 will compute 1 EB 3 EB 5 EB 8 EB 10  EB 1 2  EB 14 .  As a mod-2 vector sum, 
this is 

0001 EB 001 1  EB 0 10 1  EB 1000 EB 10 10  EB 1 100 EB 1 1 1 0 = 0 1 1 1 , or 7 .  

1 .  I f  that sum i s  equal to her number, she guesses that her color i s  orange. 
2. If that sum is equal to zero, she guesses that her color is maroon. 
3 .  If neither of these two situations occurs, she passes. 

Let's analyze what happens . First suppose that the sequence of all maroon hats 
corresponds to a vector sum of 0. Then every schoolgirl falls into one of the first 
two cases. All of them will guess incorrectly, and the team loses. More precisely, if a 
particular girl has on a maroon hat, the corresponding sum that she computes will be 
equal to her number. So, she will fall into case 1 above and will therefore guess that 
her hat is orange. Wrong! A similar mistake occurs if the girl is wearing orange. 

Next, suppose that the sequence of all maroon hats corresponds to a vector sum of 
n =P 0. Girl k sees a vector sum of n EB k or n, according as she is wearing maroon 
or orange, respectively. If k =P n, then what Girl k sees is neither her own number 
nor zero, so she passes. Girl n , however, sees 0 if she is wearing maroon and sees n 
if she is wearing orange; in both of these cases, she guesses correctly and the team 
wins. 

In the previous example, in which the sequence of all maroon hats corresponds to 
a vector sum of 7 =P 0, the only girl to see either 0 or her own number is Girl 7, who 
sees 7 .  That is her own number so she correctly guesses that her hat is orange, and the 
team wins. 

As an exercise, suppose that girls 1 ,  4, 6, 8 , 9, 1 0, and 12 are wearing maroon hats, 
and the others are wearing orange hats . Is this a winning configuration, and if so, which 
girl makes the correct guess? The solution is at the end of the next section. 

Why does this work? This is where Hamming codes point the way. The reason is 
that the configurations of maroon hats with vector sums of 0 are in one-to-one corre
spondence with the binary vectors of length 1 5  i n  the row space of M, the incidence 
matrix of the Kirkman ( 1 5 ,  3, I) -design, and as previously mentioned, this row space 
forms a ( 1 5 ,  1 1 ) Hamming code. Recall that the Hamming codes are perfect codes 
with minimum distance 3. This means that every vector in the entire vector space Z15 
either (a) is a codeword, or (b) differs in one coordinate from a unique Hamming code
word. That is, changing just one special coordinate position of a vector that is not a 
codeword will leave us with a codeword. Thus, in an arrangement of hats not corre
sponding to a codeword, the only one who can detect this is the girl who occupies that 
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special coordinate position. She can tell what her hat color should be in order to make 
the entire configuration a codeword-and so she guesses the opposite color. 

As for the probability of winning with this strategy, it is 1 5  I 1 6, and here is why: We 
have seen that the triples corresponding to the Kirkman Schoolgirls problem generate a 
vector space, the row space of the incidence matrix M, that corresponds to the ( 1 5 ,  1 1 ) 
Hamming code. The incorrect guesses will occur exactly when the arrangements of 
maroon hats correspond to a vector in the Hamming code. Hence, the probability that 
the players lose the game is given by the size of the Hamming code divided by the total 
number of Z2-vectors of length 1 5 .  This gives us 21 1 /21 5 = 1 / 16. So the chances of 
winning are actually 1 - 1/16, or 15/16. We hope you find this as surprising as we do. 
By increasing the number of players, you actually increase your chances of winning. 

As for the Three Hats Game, the triplication code is a (3, 1) Hamming code. Its 
generator matrix is [ 1 1 1], the set of codewords is { 000, 1 1 1  } and there are 8 binary 
vectors of length 3 .  Hence, the probability of a win is 1 - 1 /4, or 3/4. 

With that, we leave Thomas Kirkman and his fifteen schoolgirls, whose simple 
arrangement question has led us into many varied areas of mathematics. Hats off to all 
fifteen of you ! 

Quest ions 

Where can I find out more about Kirkman designs and block designs in general? 
One of the best places to begin is Chapter 6 of Kenneth Bogart's beautifully written 
book [3], which will take you a fair way into the subject. Two others are Marshall 
Hall's classic [12] and the more technical book by Beth, Jungnickel, and Lenz [1], 
both of which are excellent and will take you as far as you want to go. 

Is the Kirkman design found in PG(3, 2) the only solution to Kirkman's School
girls Problem? We say that two block designs are isomorphic if there is a 1 - 1  corre
spondence between the two sets of varieties that is also a 1 - 1  correspondence between 
the two sets of blocks. It was known for a long time that there are eighty nonisomor
phic ( 1 5 , 3 ,  I ) -designs .  In 1922, F. N. Cole [7] proved that only four of these eighty 
designs are resolvable. Cole also proved that three of these have two nonisomorphic 
resolutions, while the fourth has only one. (Exercise: Determine whether the ( 1 5 ,  3, I ) 
design presented in  this paper has a resolution not isomorphic to the one in  TABLE 2.) 
For which values ofv do resolvable (v, 3, 1)-designs exist? This question dates back 
to Kirkman himself [15, 16] and was open for over a hundred years . Finally, in 1 97 1  
D. K .  Ray-Choudhury and R .  M. Wilson proved that resolvable (v, 3 ,  I ) -designs exist 
if and only if v = 3 mod 6 [17]. 

Are there Kirkman designs in number fields other than the degree-16 field de
scribed above? Yes .  Let n > 3 and let p 1 , p2 , • • •  , Pn be distinct primes. The field 
Ln = Q(.JPI, ffi, . . .  , ,.[ji;J is an extension of degree 2n over the rational numbers 
Q. In such fields, the quadratic and the biquadratic subfields of Ln are the varieties and 
blocks, respectively, of a resolvable (2n - 1 ,  3 ,  I ) -design. As an exercise, show that 
such a design contains b = (2n - 1 ) (2n-I - 1)/3 blocks, and each variety appears in 
r = 2n-I - 1 blocks. A more challenging exercise is to show that these designs are 
resolvable. 

The set of 15 Schoolgirls contains 455 3-element subsets, or trios. Suppose the 
school term is 13 weeks long. What if the Schoolgirls wanted to arrange 13 weeks' 
worth of walks so that each trio of girls can walk together exactly once during the 
term? They can do it. Note that this amounts to partitioning the 455 trios into 1 3  
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distinct Kirkman ( 1 5 ,  3 ,  I ) -designs. Evidently, in I 850 Cayley referred to Kirkman's 
original problem as well as to Sylvester's extension to 13 walks. In 1 974, R. H. F. 
Denniston briefly discussed the problem's history, and then presented a solution [8] . 
As an exercise, find a partition of the 84 3-element subsets of { 1 ,  . . .  , 9} into seven 
resolvable (9, 3 ,  I ) -designs. Happy walking ! 

The Schoolgirl Problem connects block designs, finite projective geometries, al
gebraic number fields, error-correcting codes, and recreational mathematics. Are 
there any other connections? Yes, there is at least one more connection. The set 
GK = (Z/2Z)4 = { (a ,  b, c, d) : a , b, c, d E 0, I }  is a group under the operation of 
coordinate-wise addition mod 2. This group, (Z/2Z)\ has I 5  subgroups of order 
2, 35 subgroups of order 4 and I 5  subgroups of order 8; each order-2 subgroup is 
contained in three order-4 subgroups and seven order-8 subgroups.  (Does this sound 
familiar?) In fact, G K is what is known as the Galois group of the degree- 1 6  field 
K = Q(.J2, .J3, ./5, ../7) . It is the group of isomorphisms of K to itself that leaves 
Q fixed. There is a one-to-one, order-reversing correspondence between the subfields 
of K and the subgroups of G K ,  and the details of this correspondence are laid out in 
the Fundamental Theorem of Galois Theory, one of the most beautiful theorems in 
mathematics. 

What about the solution to that exercise? We know that girls I, 4, 6, 8 ,  9 ,  1 0, and 
I 2  are wearing maroon hats, and the others are wearing orange hats . The sequence of 
all maroon hats yields the vector sum I E9 4 E9 6 E9 8 E9 9 E9 10 E9 1 2, that is, 

0001 E9 0100 E9 0 1 I O  E9 1 000 E9 1 001  E9 10 10  E9 I 100 = 0100, or 4. 

Girl k sees k E9 4, and the only one with a winning view is Girl 4, who sees the all-zeros 
vector. Therefore, she guesses maroon, nobody else guesses, and the team wins. 
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When E u ler  Met I ' H op i ta l  
W I L L I A M D U N H A M 

Muhlenberg Col lege 
Al lentown, PA 1 8 1 04 

wdunham@muhlenberg.edu 

We begin with a disclaimer: Leonhard Euler, born in Basel in 1 707, never actually met 
the multiply-named Guillaume Fran�ois Antoine, Marquis de l ' Hopital, who had died 
in Paris three years before. The title of this article refers to a meeting of minds, not of 
mathematicians. 

Figure 1 Portraits of I 'Hopita l and Eu ler 

Chronological details notwithstanding, the connection between these two individu
als is real. For one thing, l ' Hopital published the first text on differential calculus, his 
Analyse des infiniment petits, in 1 696. This was justifiably regarded as the standard 
exposition, a status not relinquished until Euler's treatment of the same topic in his 
masterful Institutiones calculi differentia/is of 1 755,  shown in FIGURE 2. 

More germane is Euler's discussion, in that 1 755 work, of indeterminate forms. 
There, he presented various methods to attack the 0/0 problem, from using simple 
algebra and trigonometry, to introducing infinitely small quantities, to applying that 
most sophisticated of techniques, l ' Hopital's rule. Because it had originally appeared 
in l ' Hopital 's text, the rule now carries his name, but, as is widely known, it had been 
discovered as early as 1 694 by Johann Bernoulli ( 1 667-1 748). At the time, Johann 
was employed by the Marquis to provide lectures on the emerging subject of calculus. 
In a letter to Bernoulli, l ' Hopital described their financial arrangement [11] :  

I shall give you with pleasure a pension of three hundred livres . . .  I ask you to 
give me occasionally some hours of your time to work on what I shall ask you
and also to communicate to me your discoveries, with the request not to mention 
them to others. 
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L'Hopital acknowledged his debt in the introduction to the Analyse des infiniment 
petits by saying he had made "free use" of the discoveries of others and would happily 
"return to them whatever they please to claim as their own" [7] . Upon l 'Hopital's death, 
Bernoulli did indeed claim the rule, but somehow posterity never returned it. To those 
who bemoan the injustice of this situation, the historian of mathematics Dirk Struik 
had a tart response: "Let the good Marquis keep his elegant rule; he paid for it" [11] .  

Euler addressed these topics in Chapter 1 5  of his differential calculus text, a chapter 
titled, "On the values of functions which in certain cases seem indeterminate" [6] . The 
purpose of this article is to examine the highlights of that discussion. 

We begin with Euler's statement and prpof of the result. Then, after a few well
chosen examples, we consider his clever use of the rule to derive the summation for
mula for the first n whole numbers: 

1 + 2 + 3 + · · · + n = n (n + 1) /2. 

Even more improbably, he applied l' Hopital's rule to evaluate the infinite series 

1 1 1 1 
1 + - + - + - + · · · + - + · · · .  

4 9 1 6  n2 
This, of course, is the famous "Basel Problem." Euler had earned mathematical im
mortality in the mid- 1 730s by determining the sum to be rr 2 j 6. Over the course of 
his career, he gave at least two other derivations of the result [3] ,  but his evaluation 
via l ' Hopital 's rule seems to be less well known. We hope it will provide a fitting 
conclusion to this paper. 

The ru le  and its proof 

Euler began by introducing the quotient y = P j Q, where P and Q were functions of 
x .  For the value x = a, Euler assumed that both numerator and denominator vanished, 
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thereby reducing the expression to the form 010. In  such a case, he  acknowledged that 
the fraction would "seem indeterminate," but, in fact, its value might yet be found. 

To illustrate, he considered y = (a2 - x2) 1 (a - x) ,  which for x = a  obviously took 
the form 010. Euler divided numerator by denominator to get y = a +  x ,  which, for 
x = a ,  became y = 2a . "In this case," he wrote, "the fraction 010 is equal to the 
quantity 2a ." 

Here the indeterminate was, in fact, determined, but this example was so simple that 
calculus was unnecessary. Euler intended to set his sights on more complicated quo
tients and thus would need the heavy mathematical artillery embodied in l 'Hopital 's 
rule. 

With no explicit mention of l 'Hopital (nor of Bernoulli ! )  Euler introduced the rule 
as follows: if y = PIQ where P (a) = Q (a) = 0, then, for x = a, " . . .  the fraction 
d PI d Q takes the value of the fraction PI Q in question." 

Before considering his proof, we emphasize that it pre-dated the modem era. Euler's 
analysis was not our analysis, as will be immediately clear. Indeed, today's reader 
might be uneasy about the very statement of the rule. At its heart were the differentials 
d P and d Q rather than the corresponding derivatives-a reminder that in the 1 8th cen
tury, the notion of differential calculus was taken literally. More significantly, neither 
the statement nor proof mentioned limits, a 1 9th century innovation. Where we now 
use l 'Hopital 's rule to evaluate 

1. P (x) 
tm -- , 

x -> a  Q (x) 

Euler instead wanted to find the "value" of the quotient P (x)l Q (x) when x = a . 
So, to determine y = (a2 - x2)1 (a - x) when x = a, our predecessors would find 

differentials top and bottom to get (-2x dx) I ( -dx) = 2x and conclude that the frac
tion (a2 - x2) 1 (a - x) takes the "value" of 2a when x = a . (Of course, in all cases 
the differential dx will cancel as it did here, leaving us with P' (x) I Q' (x ), the familiar 
quotient of derivatives . )  

As was characteristic of the time, Euler's proof of l 'Hopital 's rule rested upon the 
notion of the infinitely small. Here and elsewhere, he used infinitely small quanti
ties without hesitation and had an uncanny-although perhaps "insightful" is a better 
word-understanding of how to exploit them in mathematical arguments . Euler had 
discussed these quantities at some length in the third chapter of his differential cal
culus text, where he explained why " . . .  a finite quantity can neither be increased nor 
decreased by adding or subtracting an infinitely small quantity" [4]. 

Moreover, if y = y (x) and we augment a by the infinitely small amount dx , then 
y will change by the infinitely small amount dy where dy = y (a + dx) - y (a) as 
illustrated in FIGURE 3. It follows that 

y (a + dx) = y (a) + dy . ( 1 )  

We now consider Euler's proof o f  l 'Hopital 's rule for evaluating P (x)l Q (x) when 
P (a) = Q (a) = 0. As he had noted, the replacement of a by a +  dx changed nothing, 
and so he considered the fraction P (a + dx)l  Q (a + dx) and applied ( 1 )  to conclude 
that 

P (a + dx) 
= 

Q (a + dx) 
P�) + dP O + dP dP 

= = 
Q�) + dQ O + d Q dQ  

The 010 form was thereby reduced to the ratio of two differentials, and this established 
l 'Hopital's rule. 
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dx 

a a + dx  
Figure 3 Differenti a l s  
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Mathematicians of today can lodge a host of objections to this sort of derivation. A 
modem proof of l 'Hopital 's rule, with all the epsilons and deltas intact, is surprisingly 
complicated (see, for instance, Boas [1] or Ross [10]) and, in any case, lay well beyond 
the capability of 1 8th century analysis . 

We should note, however, that demonstrations like Euler's, resting upon infinitesi
mals, can be recast within the context of hyperreal numbers . In the process, some of the 
mysterious goings-on surrounding infinitely small quantities tum out to be not quite 
so mysterious. A paper by McKinzie and Tuckey [8] nicely addresses these points . 

But the focus of our article is not so much on how Euler proved the rule as on how 
he used it. In this regard we shall discuss, in tum, some basic examples, the sums of 
integers, and the Basel Problem. 

Four Eulerian examples 

As would any textbook author, Euler sought to show l 'Hopital 's rule in action. To 
this end, he included a few routine problems that, if converted to "limit" terminology, 
would be appropriate in any modem calculus book. For instance, he derived: 

an - xn ex - e -x 
---- = nan when x = a ; and = 2, when x = 0. 
ln a - ln x ln( 1  + x) 

But other examples in the chapter better showcased his mathematical skills. We con
sider four of these below. 

EXAMPLE (A) . "Find the value of ( 1 - sin x + cos x ) j (sin x + cos x - 1 )  when 
X = JT j2." 

The expression is indeterminate, and an application of l 'Hopital 's rule led Euler to 
(- cos x - sin x)j (cos x - sin x) which became 1 for x = rr:j2. Nothing remarkable 
here. 

But, like the effective expositor that he was, Euler attacked the problem in an en
tirely different manner. To do so, he invoked the trigonometric identity 

cos x = .Jcos2 x = J1 - sin2 x = .J1 + sin x · .J1 - sin x ,  

which transformed the initial fraction into 
1 - sin X +  COS X ( 1 - sin x) + COS X 

= 
sin x + COS X - 1 

= 

COS X - ( 1  - sin x) 
,Jl - sin x ,Jl - sin x + ,Jl + sin x ,J1 - sin x 
,Jl + sin x ,J1 - sin x - ,Jl - sin x ,Jl - sin x 
,Jl - sin x + ,Jl + sin x 
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For x = n/2, the fraction reduced to ( ,Jl=l  + .Jl+T) / (.JT+l - ,Jl=l) = 
v'l; v'2 = 1 .  This second approach, of course, resulted in the same answer but re
quired only the tools of trigonometry. 

EXAMPLE (B) . "Find the value of (ex - 1 - ln( l + x))jx2 in the case where we 
place x = 0." 

For this indeterminate form, Euler's first application of l 'H6pital 's rule gave 
(ex - 1 / (x + l ) ) /2x , which was also indeterminate for x = 0. A second applica
tion was necessary, yielding (ex + 1 / (x + 1 )2) /2. If x = 0, the fraction is 1 .  

Again, Euler provided an alternative derivation, this one involving differentials 
along with the series expansions 

x2 x3 x2 x3 
ex = 1 + x + - + - + · · · 

2 !  3 !  and ln( 1  + x) = x - - + - - · · · . 

2 3 
Substituting the infinitely small dx into the original fraction and using the series above, 
Euler reasoned that the indeterminate form was equal to 

edx - I - ln( l + dx) 
(dx)2 [ 1 + dx + (dx)2 + (dx)3 + (dx)4 + . .  · ] _ 1 _ [dx _ (dx)2 + (dx)3 _ (dx)4 -1- . . · ] 2 6 24 2 3 4 '  

= =---------------------------=-�--�-----------------------= (dx)2 

(dx)2 - (d� )3 + 7 (�24 - . . .  dx 7 (dx)2 
___ _.:e._ __ ..::..:._ __ = 1 - - + -- - . . .  = 1 .  (dx)2 6 24 

The last step followed because dx was infinitely small, and so all terms after the first 
were insignificant compared to the finite quantity, 1 .  As before, this was the answer 
obtained via l 'H6pital 's rule. 

EXAMPLE ( C ) .  "Find the value of the expression (xx - x ) / ( 1  - x + ln(x) ) when 
we place x = 1 .' ' 

What makes this indeterminate form noteworthy-and a splendid example for a 
modern calculus course-is the appearance of logarithmic differentiation in the solu
tion. Applying l 'H6pital 's rule to the quotient, Euler got 

(xx ( l  + ln x) - 1 )  
(- 1 + 1 /x) 

This remained indeterminate, so a second application gave 

for x = 1 .  (For most students, an answer of -2 emerging from the expression 
(xx - x)j ( l  - x + ln(x) ) is utterly unexpected.) 

EXAMPLE ( D ) .  "Find the value of the fraction x" ;e- I fx in the case that x = 0." 
In modern terms, Euler wanted 

x" lim --
x"""*o+ e- l (x 

for n a whole number. He began by noting that "both the numerator and denominator 
vanish" when x = 0. For algebraic reasons, he introduced s = x" je- I fx . L'H6pital 's 
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rule led him to evaluate 

s = nxn- 1  j (e- 1 1x · x-2) = nxn+ 1 je- l fx for x = 0. 

Here, rather than reducing the degree of the numerator, the process had increased it , a 
phenomenon Euler characterized as "a misfortune." It seemed to lead away from, not 
towards, a solution. He had to devise a new strategy. 

From s = xn je- 1 fx , Euler deduced that 

xn = s . e- 1 /x and so (xn )n+ 1 = sn+ 1 . e- (n+ l ) /x . 

In like manner, s = nxn+ l je- 1 fx implied that 

xn+ l = (s . e- 1 fx ) In and so (xn+ 1 t = (sn . e-nfx ) Inn . 

Equating these two expressions for xn <n+ 1 l ,  Euler concluded that 

sn+ l . e- (n+ 1 )jx = (sn . e-nfx )jnn ' and so s = l j (nne- l fx ) .  

Only then did he let x = 0 to answer the original question: s = oo .  
The answer is correct, although the method certainly seems peculiar to the modern 

eye. But Euler was Euler, and nobody flung symbols across the page with such zest. 

Integer s u m s  

The preceding examples, although intriguing, were concocted to show l 'Hopital 's rule 
at work. More challenging was to apply the rule to establish a result of independent 
significance. This Euler did when he summed the first n whole numbers via l 'Hopital . 

THEOREM.  If n is a whole number, then 1 + 2 + 3 + · · · + n = n (n + 1 ) /2. 

Proof To begin, Euler recalled the summation formula for a finite geometric series, 
i.e., x + x2 + x3 + · · · + xn = (x - xn+ 1 ) j ( l - x) .  He differentiated both sides with 
respect to x to get 1 + 2x + 3x2 + · · · + nxn- 1  = [ 1 - (n + l )xn + nxn+ 1 ] j ( l - x)2 
and then multiplied through by x to arrive at 

X - (n + 1 )xn+ 1 + nxn+Z 
x + 2x2 + 3x3 + · · · + nxn = --'-----'------=---

( 1  - x)2 
(2) 

For x = 1 ,  the left-hand side of (2) was simply 1 + 2 + 3 + · · · + n, the object of 
the theorem. But if x = 1 ,  the right-hand side reduced to OjO and thus was a ready 
candidate for l 'Hopital . Euler's first application of the rule yielded 

1 - (n + 1 ) 2xn + n (n + 2)xn+ 1 
-2 ( 1  - x) 

which remained indeterminate for x = 1 .  After a second application, he had 

- (n + 1 ) 2nxn- 1 + n (n + 2) (n + 1 )xn 

For x = 1 ,  this became 
- (n + 1 )2n + n (n + 2) (n + 1 )  

2 

2 

n (n + 1 ) [  -n - 1 + n + 2] 
= '------'----�----------� 

2 
n (n + 1 )  

2 
By equating the results for the left and right sides of (2), Euler had thus established the 
summation formula 1 + 2 + 3 + · · · + n = n (n + 1 ) /2. • 
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There are, of course, far easier ways to prove this.  Euler's derivation-requiring 
geometric series, differential calculus, and two doses of l 'Hopital--calls to mind Dr. 
Johnson's description of " . . .  a dog's walking on his hinder legs. It is not done well; 
but you are surprised to find it done at all" [9] . 

Anyone familiar with Euler's methods will not be surprised to learn that he pushed 
further. Another differentiation of both sides of (2), another wholesale multiplication 
by x , and yet another application of l 'Hopital for x = 1 yielded the summation formula 
for the squares: 1 2 + 22 + 32 + . . .  + n2 = [n (n + 1 ) (2n + 1 ) ] /6. Details are left to 
the reader, with the caveat that the algebra and calculus get a bit wearisome. 

So, Euler could use l 'Hopital to sum these well-known finite series. How he did the 
same for a famous infinite series is the topic of our last section. 

The Basel problem via I ' Hopital 

The derivation Euler gave in his differential calculus text rested upon the curious iden
tity 

1 1 1 1 7r X - 1 7r 
-- + -- + -- +  + · · · = + . (3) l + x2 4 + x2 9 + x2 1 6 + x2 2x2 x (eZrrx _ I ) 

To understand how he arrived at this, we break the argument into a pair of lemmas, 
in the process streamlining a few of Euler's steps while retaining the essence of his 
original reasoning. 

1 1 1 1 1 7r cos 7r y 
LEMMA 1 -- + -- + -- + + · · · = - - ---. 1 - y2 4 - y2 9 - y2 1 6 - y2 2y2 2y sin rry 
Proof Euler began with a favorite tactic : expressing the sine of an angle t as the 

infinite product 

He justified this by the fact that the equation sin t = 0 has solutions t = 0, ±rr , ±2rr , 
±3rr, . . .  , which generate the corresponding factors on the right side. For t = rr y ,  this 
product became 

( 2 - y ) ( 2 + y ) ( 3 - y ) ( 3 + y ) sin rry = rr y ( l - y) ( l  + y) -
2

- --
2

- --
3

- --
3

- · · · 

( 4 - y2 ) ( 9 - y2 ) ( 1 6 - y2 ) = rr y ( 1  - y2) -
4
- -

9
-

1 6 · · .  · 

Euler took logs of both sides of ( 4) to get 

(4) 

ln(sin rry) = ln rr + ln y + ln( 1  - y2) + ln(4 - y2) - ln 4 + ln(9 - y2) - ln 9 + · · · 

and then differentiated with respect to y to conclude 

rr cos rry 
sin rry 

2y 2y 2y 2y 
- - ----- - ----- - ----- - ---� 

1 - y2 4 - y2 9 - y2 1 6 - y2 y 

Lemma 1 follows immediately [6] . 

rr cos(-irrb) rr rr LEMMA 2 . = - + . 2ib sin(-irrb) 2b b (e2rrb - 1 )  

• 
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Proof This result can be traced back to Euler's Introductio in analysin in.finitorum 

of 17 48 . There he cited it as " . . .  a nice illustration of the reduction of sines and cosines 
of imaginary arcs to real exponentials" [5] . The necessary prerequisites were Euler's 
formulas for cosine and sine 

which implied that 

eiz + e-iz eiz _ e-iz 
cos z = 

2 
and sin z = 

2i 

cos z i (eiz + e-iz ) i (e2iz + l ) 
sin z 

= = 
(eiz - e-iz ) (e2iz - 1 )  . 

Substituting z = - inb in order to introduce the factors that appear in the lemma, we 
have 

7r COS (-i7rb) 7r [ i (e2:rrb + 1 ) ] 7r 7r 
2ib sin(- i n b) = 

2ib e2:rrb - 1 
= 

2b 
+ 

b (e2:rrb - 1 ) ' 

proving the result. • 

We now combine these results to derive the key series in (3) . Euler's idea was to 
replace y by -ix (and hence y2 by -x2) in Lemma 1 to get 

1 1 1 1 1 7r COS (- i7rX) 
-- + -- + -- +  + · · · = - - + . l + x2 4 + x2 9 + x2 1 6 + x2 2x2 2ix sin( - inx)  

By Lemma 2, the right-hand side is 

1 [ 77:  11: ] nx - 1 11: - - + - + - + -....,....---2x2 2x x (e2:rrx - 1 )  - 2x2 x (e2:rrx - 1 ) ' 

and so (3) is established. Duncan [2, p. 22 1 ]  gives a modem derivation of the identity 
within the theory of meromorphic functions. 

By now, this dizzying algebraic journey might suggest that Euler has led us into a 
maze from which escape is hopeless . But the payoff was near, courtesy of l 'Hopital ' s 
rule [6] . 

1 1 1 1 n2 
THEOREM . 1 + - + - + - + · · · + - + · · · = - . 4 9 1 6 n2 6 

Proof Combining terms on the right side of (3), Euler noted that 

1 1 1 1 7rX - 1 7r 
-- + -- + -- + + · · · = + ----1 + x2 4 + x2 9 + x2 1 6 + x2 2x2 x (e2:rrx - 1 )  

nxe2:rrx - e2:rrx + 7rX + 1 
= ---��--�--

2x2e2:rrx - 2x2 

For x = 0, the leftmost side was the desired infinite series 1 + 1 I 4 + 1 /9 + · · · + 
l jn2 + · · · , whereas the rightmost fraction became 0/0. Differentiating numerator and 
denominator gave 

7r - 7r e2:n:x + 2n 2xe2:rrx 
4xe2:rrx + 4nx2e2:rrx - 4x ' 
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an indeterminate expression when x = 0 .  A second application of ! 'Hopi tal yielded 

Alas, this too was indeterminate, so Euler needed a third application of the rule to get 

4JT + 4JT 2x + 2JTe-2rrx ' 

which, for x = 0, became JT 3 / (47r + 27r ) = JT2 j6. In this manner, with not one but 
three helping hands from the Marquis de l 'Hopital, Euler proved that 

1 1 1 1 JT 2 
1 + - + - + - + . . .  + - + . . .  = - .  4 9 1 6 n2 6 • 

Final thoughts 

What a marvelous derivation this was . It boasted an all-star cast of transcendental 
functions : sines, cosines, logs, and exponentials .  It ranged from the real to the complex 
and back again. And it featured l 'Hopital's rule in a starring role. Of course, none of 
this would have happened without the fluid imagination of Leonhard Euler, symbol 
manipulator extraordinaire. 

As if that were not sufficient, Euler provided an alternative derivation [6] . This time, 
he employed differentials and began with Lemma 1 :  

1 1 1 1 7T cos 7T y 
-- + -- + -- + · · · = - - --____::___ 
1 - y2 4 - y2 9 - y2 2y2 2y sin 7TY sin JTy - JTy cos JTy 

2y2 sin JTy 

As before, for y = 0, the left side was 1 + 1 /4 + 1 /9 + · · · + 1 jn2 + · · · and the right 
side was indeterminate. Here, in fact, was another opportunity to invoke l 'Hopital 's 
rule and prove the result (the reader is invited to give it a try). 

Euler instead introduced the differential dx in place of y and used series to convert 
the right-hand side into 

sin(JT dx) - 7T dx cos(JT dx) 
2(dx)2 sin(JT dx) [7T dx _ rr3 (dx)3 + rr5 (dx)5 _ • •  · ] _ 7T dx [ I _ rr2 (dx)2 + rr4 (dx)4 _ • •  · ] 6 1 20 2 24 

2 (dx)2 [7T (dx) _ rr3 �x)3 + rrsig;>5 _ . . · ] 
rr2 rr4 (dx)2 
3 - -3-o -

+ · · ·  
= --�-���-�---

2 _ rr2 (dx )2 + rr4 (dx)4 _ • . • 

• 

3 60 
But this is just JT 2 j6 because the infinitely small dx , in comparison to finite quantities, 
is indistinguishable from zero. Voila ! 

That such different approaches led to JT 2 j6 must have been very satisfying for Euler. 
To be sure, few mathematicians were more adept at finding multiple paths to the same 
end. The discussion above illustrates the power-and the charm-of variety. Modem 
textbook writers should take note. 

And modem writers could learn as well from his choice of examples, a choice 
that del ivered more than a routine appreciation of the technique in question. Clever 
examples can indeed be the icing on our mathematical cake. 
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It should be evident that here Euler was in his element, operating at the height of 
his analytic powers . When Euler met l 'Hopital, good things happened. 

Acknowledgment. The author thanks Penny Dunham of Muhlenberg College for her many helpful suggestions. 
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Math B i te : A Magic  E i ght 

In many cultures, the number 8 has special significance and is even considered 
magical . For instance, in China the Olympic Games were scheduled to begin at 
exactly 8 :08 PM on 8/8/08. 

Those wishing to advance the cult of the number 8 , even in 2009, might enjoy 
knowing that the sequence 

9 98 987 9876 98765 
1 '  1 2 '  1 23 , 1 234 ' 1 2345 ' 

converges exactly to 8 .  
You probably have realized that the ellipses ( . . .  ) need a suitable interpreta

tion, since numbers greater than 10  and less than 0 are not normally allowed to 
serve as digits . Check for yourself that, with a suitable placement of the decimal 
point, the numerator and denominator become 

00 ( 1 ) k t; ( 1 0 - (k + 1 ) )  1 0  
and 

00 ( 1 ) k Z::: <k + 1 ) -k=O 1 0  

Summing these series gives 800/8 1  as the numerator and 1 00/8 1 as the de
nominator. And the magic quotient of these two is 8 .  

-Paul and Vincent Steinfeld 
Darmstadt, Germany 



2 6  MAT H E MATICS MAGAZI N E  

Matroids You Have Known 
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Anyone who has worked with matroids has come away with the conviction that 
matroids are one of the richest and most useful ideas of our day. 

-Gian Carlo Rota [10] 

Why matroids? 

Have you noticed hidden connections between seemingly unrelated mathematical 
ideas? Strange that finding roots of polynomials can tell us important things about 
how to solve certain ordinary differential equations, or that computing a determinant 
would have anything to do with finding solutions to a linear system of equations. 
But this is one of the charming features of mathematics-that disparate objects share 
similar traits. Properties like independence appear in many contexts . Do you find 
independence everywhere you look? In 1 933 ,  three Harvard Junior Fellows unified 
this recurring theme in mathematics by defining a new mathematical object that they 
dubbed matroid [4] . Matroids are everywhere, if only we knew how to look. 

What led those junior-fellows to matroids? The same thing that will lead us: Ma
troids arise from shared behaviors of vector spaces and graphs . We explore this natural 
motivation for the matroid through two examples and consider how properties of in
dependence surface. We first consider the two matroids arising from these examples, 
and later introduce three more that are probably less familiar. Delving deeper, we can 
find matroids in arrangements of hyperplanes, configurations of points, and geometric 
lattices, if your tastes run in that direction. 

While tying together similar structures is important and enlightening, matroids do 
not reside merely in the halls of pure mathematics ;  they play an essential role in 
combinatorial optimization, and we consider their role in two contexts, constructing 
minimum-weight spanning trees and determining optimal schedules. 

What's that, you say? Minimum-weight what? The mathematical details will be
come clear later, but suppose you move your company into a new office building and 
your 25 employees need to connect their 25 computers to each other in a network. The 
cable needed to do this is expensive, so you want to connect them with the least cable 
possible; this will form a minimum-weight spanning tree, where by weight we mean 
the length of cable needed to connect the computers, by spanning we mean that we 
reach each computer, and by tree we mean we have no redundancy in the network. 
How do we find this minimum length? Test all possible networks for the minimum 
total cost? That would be 2523 � 1 .4 x 1032 networks to consider. (There are nn-z 
possible trees on n vertices; Bogart [2] gives details.) A computer checking one billion 
configurations per second would take over a quadrillion years to complete the task. 
(That's 101 5 years-a very long time.) Matroids provide a more efficient method. 
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Not only are matroids useful in these optimization settings, it turns out that they 

are the very characterizations of the problems. Recognizing that a problem involves a 
matroid tells us whether certain algorithms will return an optimal solution. Knowing 
that an algorithm effects a solution tells us whether we have a matroid. 

In the undergraduate curriculum, notions of independence arise in various contexts, 
yet are often not tied together. Matroids surface naturally in these situations. We pro
vide a brief, accessible introduction so that matroids can be included in undergraduate 
courses, and so that students (or faculty ! )  interested in matroids have a place to start. 
For further study of matroids, please see Oxley's Matroid Theory [9] , especially its 
6 1 -page chapter, Brief Definitions and Examples. Only a cursory knowledge of linear 
algebra and graph theory is assumed, so take out your pencil and work along. 

Declaration of (in )dependence 

In everyday life, what do we mean by the terms dependence and independence? In 
life, we feel dependent if there is something (or someone) upon which (or whom) 
we must rely. On the other hand, independence is the state of self-sufficiency, and 
being reliant upon nothing else. Alternatively, we consider something independent if 
it somehow extends beyond the rest, making new territory accessible, whether that 
territory is physical, intellectual, or otherwise. In such a case that independent entity 
is necessary for access to this new territory. 

But we use these terms more technically in mathematics, so let us connect the col
loquial to the technical by considering two examples where we find independence. 

Linear independence of vectors The first and most familiar context where we en
counter independence is linear algebra, when we define the linear independence of a 
set of vectors within a particular vector space. Consider the following finite collection 
of vectors from the vector space �3 (or C3 or (lF3)3 ) :  

It is not difficult to determine which subsets of this set are linearly independent 
sets of vectors over �3 : subsets in which it is impossible to represent the zero vec
tor as a nontrivial linear combination of the vectors of the subset. To put it another 
way, no vector within the subset relies upon any of the others . If some vector were 
a linear combination of the others, we would call the set of vectors linearly depen
dent. Clearly, this means v7 must be excluded from any subset aspiring to linear 
independence. 

Let us identify the maximal independent sets. By maximal we mean that the set 
in question is not properly contained within any other independent set of vectors . We 
know that since the vector space has dimension 3 ,  the size of such a maximal set can be 
no larger than 3; in fact, we can produce a set of size 3 immediately, since { v � .  v2 , v3 } 
forms the standard basis . It takes little time to find B, the complete set of maximal 
independent sets . The reader should verify that B is 
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{ { v J , v2 , v3 } , { v J , Vz , v4 } ,  { v J , Vz , Vs } ,  { v J , V3 , vs } , { v J , V4 , vs } ,  

{ v2 , V3 , v4 } , { v2 , v3 , v6 } ,  { v2 , v4 , vs } ,  { v2 , v4 , v6 } ,  

{ v2 , Vs , v6 } ,  { v3 , V4 , vs } ,  { v3 , Vs , v6 } ,  { v4 , Vs , v6 } } . 

Note that each set contains exactly three elements . This will tum out to be a robust 
characteristic when we expand the scope of our exploration of independence. 

We know from linear algebra that every set of vectors has at least one maximal 
independent set. Two other properties of B will prove to be important: 

• No maximal independent set can be properly contained in another maximal indepen
dent set. 

• Given any pair of elements, B1 , B2 E B, we may take away any v from B1 and there 
is some element w E B2 such that (B1 \ v) U w is in B. 

The reader is encouraged to check the second property in a few cases, but also 
strongly encouraged not to bother checking all C2°) = 45 pairs of maximal sets . (A 
modest challenge: Using your linear algebraic expertise, explain why this "exchange" 
must be possible in general . ) 

Notice that we used only seven vectors from the infinite set of vectors in JR3 . In 
general , given any vector space, we could select some finite set of vectors and then 
find the maximal linearly independent subsets of that set of vectors. These maximal 
sets necessarily have size no larger than the dimension of the vector space, but they 
may not even achieve that size. (Why not?) Whatever the size of these maximal sets, 
they will always satisfy the two properties listed above. 

Graph theory and independence Though not as universally explored as linear al
gebra, the theory of graphs is hardly a neglected backwater. (West [11] and Wilson 
[15] give a general overview of basic graph theory.) We restrict our attention to con
nected graphs. There are two common ways to define independence in a graph, on the 
vertices or on the edges. We focus on the edges. What might it mean for a set of edges 
to be independent? 

Revisiting the idea of independence being tied to necessity, and the accessibility of 
new territory, when would edges be necessary in a connected graph? Edges exist to 
connect vertices. Put another way, edges are how we move from vertex to vertex in a 
graph. So some set of edges should be considered independent if, for each edge, the 
removal of that edge makes some vertex inaccessible to a previously accessible vertex. 

Consider the graph in FIGURE 1 with edge set E = {e 1 , e2 , • • •  , e7 } . 

Figure 1 Connected graph C 
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Now, consider the subset of edges S = {e 1 , e3 , e4 , e5 } . I s  this an independent set 
of edges? No, because the same set of vertices are connected to one another even if, 
for example, edge e3 were removed from S. Note that the set S contains a cycle. (A 
cycle is a closed path.) Any time some set of edges contains a cycle, it cannot be an 
independent set of edges. This also means {e7 } is not an independent set, since it is 
itself a cycle; it doesn' t get us anywhere new. 

In any connected graph, a set of edges forming a tree or forest (an acyclic sub
graph) is independent. This makes sense two different ways : first, a tree or forest never 
contains a cycle ; second, the removal of any edge from a tree or forest disconnects 
some vertices from one another, decreasing accessibility, and so every edge is nec
essary. A maximal such set is a set of edges containing no cycles, which also makes 
all vertices accessible to one another. This is called a spanning tree . There must be at 
least one spanning tree for a connected graph. Here is the set, T, of all spanning trees 
for G :  

T = { {e , , e2 , e3 } ,  {e , , e2 , e4 } ,  {e , , e2 , es } , {e , , e3 , es } . {e , , e4 , e5 } ,  

{e2 , e3 , e4 } ,  {e2 , e3 , e6 } ,  {e2 , e4 , es } . {e2 , e4 , e6 } ,  

{e2 , es , e6 } ,  {e3 , e4 , es } ,  {e3 , es , e6 } ,  {e4 , es , e6 } } . 

Here again we see that all maximal independent sets must have the same size. (How 
many edges are there in a spanning tree of a connected graph on n vertices?) 

Spanning trees also have two other important traits : 

• No spanning tree properly contains another spanning tree. 
• Given two spanning trees, T1 and T2 , and an edge e from T1 ,  we can always find 

some edge f from T2 such that (T1 \ e) U f will also be a spanning tree. 

To demonstrate the second condition, consider the spanning trees T1 and T2 shown 
as bold edges of the graph G in FIGURE 2. 

T, T2 
Figure 2 Th ree spa n n i ng trees of G 

Suppose we wanted to build a third spanning tree using the edges from T1 except 
e 1 • Then we must be able to find some edge of T2 that we can include with the leftover 
edges from T1 to form the new spanning tree � .  We can, indeed, include edge e3 to 
produce spanning tree T_1 ,  also shown in FIGURE 2. This exchange property would 
hold for any edge of T1 • 

Motivated by our two examples, now is the proper time for some new terminology 
and definitions to formally abstract these behaviors . 
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Thus, matroids 

As you notice these similarities between the spanning trees of a graph and the maxi
mal independent sets of a collection of vectors, we should point out that you are not 
alone. In the 1 930s, H. Whitney [13] , G. Birkhoff [1] ,  and S .  Maclane [8] at Harvard 
and B .  L. van der Waerden [12] in Germany were observing these same traits . They 
noticed these properties of independence that appeared in a graph or a collection of 
vectors, and wondered if other mathematical objects shared this behavior. To allow for 
the possibility of other objects sharing this behavior, they defined a matroid on any 
collection of elements that share these traits. We define here a matroid in terms of its 
maximal independent sets, or bases. 

The bases A matroid M is an ordered pair, (E ,  B) , of a finite set E (the elements) 
and a nonempty collection B (the bases) of subsets of E satisfying the following con
ditions, usually called the basis axioms: 

• No basis properly contains another basis .  

• If B1 and B2 are in B and e E B1 , then there is an element f E B2 such that (B1 \ e) U 
f E B. 

The bases of the matroid are its maximal independent sets . By repeatedly applying 
the second property above, we can show that all bases have the same size. 

Returning to our examples, we can define a matroid on a graph. This can be done 
for any graph, but we will restrict our attention to connected graphs. If G is a graph 
with edge set E, the cycle matroid of G,  denoted M(G),  is the matroid whose element 
set, E, is the set of edges of the graph and whose set of bases, B, is the set of spanning 
trees of G. We can list the bases of the cycle matroid of G by listing all of the spanning 
trees of the graph. 

For the graph in the FIGURE 1 ,  the edges {e 1 , e2 , e3 , e4 , e5 , e6 , e7 } are the elements 
of M(G) .  We have already listed all of the spanning trees of the graph above, so we 
already have a list of the bases of this matroid. 

We can also define a matroid on a finite set of vectors . The vectors are the elements, 
or ground set, of the matroid, and B is the set of maximal linearly independent sets of 
vectors . These maximal independent sets, of course, form bases for the vector space 
spanned by these vectors. And we recall that all bases of a vector space have the same 
size. 

This helps us see where some of the terminology comes from. The bases of the 
vector matroid are bases of a vector space. What about the word matroid? We can 
view the vectors of our example as the column vectors of a matrix, which is why 
Whitney [13] called these matroids. 

V2 V3 V4 Vs 
0 0 1 0 
1 0 0 1 
0 1 1 1 

These (column) vectors { v" v2 , v3 , v4 , v5 , v6 , v7 } are the elements of this matroid. 
The bases are the maximal independent sets listed in the previous section. 

Now for a quick example not (necessarily) from a matrix or graph. We said that 
any pair (E ,  B) that satisfies the two conditions is a matroid. Suppose we take, for 
example, a set of four elements and let the bases be every subset of two elements. This 
is a matroid (check the two conditions), called a uniform matroid, but is it related to 



VO L.  82, NO. 1, F E B R U ARY 2009 3 1  
a graph or a collection of vectors? We will explore this later, but first let us further 
develop our first two examples .  

Beyond the bases You might notice something now that we've looked at  our two 
examples again. The bases of the cycle matroid and the bases of the vector matroid 
are the same, if we relabel vi as ei . Are they the same matroid? Yes .  Once we know 
the elements of the matroid and the bases, the matroid is fully determined, so these 
matroids are isomorphic. An isomorphism is a structure-preserving correspondence. 
Thus, two matroids are isomorphic if there is a one-to-one correspondence between 
their elements that preserves the set of bases [15] . 

Knowing the elements and the bases tells us exactly what the matroid is, but can we 
delve deeper into the structure of this matroid? What else might we like to know about 
a matroid? Well, what else do we know about a collection of vectors? We know what 
it means for a set of vectors to be linearly dependent, for instance. In a graph, we often 
look at the cycles of the graph. If we had focused on the linearly dependent sets and 
cycles in our examples, we would have uncovered similar properties they share. 

Recall also that, if we take a subset of a linearly independent set of vectors, that 
subset is linearly independent. (Why? If a vector could not be written as a linear com
bination of the others, it cannot be written as a linear combination of a smaller set.) 
Also, if we take a subset of the edges of a tree in a graph, that subset is still indepen
dent: If a set of edges contains no cycle, it would be impossible for a subset of those 
edges to contain a cycle. So any subset of an independent set is independent, and this 
is true for matroids in general as well . 

We can translate some of these familiar traits from linear algebra and graph theory 
to define some more features of a matroid. Any set of elements of the matroid that 
is contained in a basis is an independent set of the matroid. Further, any independent 
set can be extended to a basis .  On a related note, anytime we have two independent 
sets of different sizes, say I h I  < I 12 1 ,  then we can always find some element of the 
larger set to include with the smaller so that it is also independent: There exists some 
e E 12 such that 11 U e is independent. This is an important enough fact that if we were 
to axiomatize matroids according to independence instead of bases-as we mention 
later-this would be an axiom ! It also fits our intuition well, if you think about what it 
means for vectors . 

A subset of E that is not independent is called dependent. A minimal dependent set 
is a circuit in the matroid; by minimal we mean that any proper subset of this set is not 
dependent. 

What is an independent set of the cycle matroid? A set of edges is independent in 
the matroid if it contains no cycle in the graph because a subset of a spanning tree 
cannot contain a cycle. Thus, a set of edges is dependent in the matroid if it contains a 
cycle in the graph. A circuit in this matroid is a cycle in the graph. 

Get out your pencils !  Looking back at the graph in FIGURE 1 ,  we see that {e2 , e4 } 
is an independent set, but not a basis because it is not maximal. The subset { e7 } is 
not independent because it is a cycle; it  is a dependent set, and, since it is a minimal 
dependent set, it is a circuit. (A single-element circuit is called a loop in a matroid.)  
In fact, any set containing { e7 } is dependent because it  contains a cycle in the graph, 
or circuit in the matroid. Another dependent set is {e2 , e3 , e4 , e5 } ,  but it is not a circuit; 
{ e2 , e3 , e5 } is a circuit. 

In the vector matroid, a set of elements is independent in the matroid if that col
lection of vectors is linearly independent; for instance, { v2 , v4 } is an independent set. 
A dependent set in the matroid is a set of linearly dependent vectors, for example 
{ v2 , v3 , v4 , v5 } . And a circuit is a dependent set, all of whose proper subsets are inde
pendent. { v2 , v3 , v5 } is a circuit, as is { v7 } . We noted earlier that any set containing { v7 } 
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i s  a linearly dependent set; w e  now see that any such set contains a circuit in the vector 
matroid . 

One way to measure the size of a matroid is the cardinality of the ground set, E,  
but another characteristic of  a matroid is the size of the basis, which we call the rank 
of the matroid. If A c E is a set of elements of a matroid, the rank of A is the size 
of a maximal independent set contained in A .  In our vector matroid example, let A =  
{ v 1 , v2 , v6 , v7 } . The rank of A is two. The rank of { v7 } is zero. 

Because it arose naturally from our examples, we defined a matroid in terms of the 
bases.  There are equivalent definitions of a matroid in terms of the independent sets, 
circuits, and rank; indeed most introductions of matroids will include several such 
equivalent axiomatizations. Often the first set of exercises is to show the equivalence 
of these definitions . We spare the reader these theatrics, and refer the interested reader 
to Oxley [9] or Wilson [14, 15] . 

Matro i ds you may not have known 

If a matroid can be represented by a collection of vectors in this very natural way, and 
can also be represented by a graph, why do we need this new notion of matroid? You 
may ask yourself, given some matroid, M, can we always find a graph such that M is 
isomorphic to the cycle matroid of that graph? Given some matroid, M, can we always 
find a matrix over some field such that M is isomorphic to the vector matroid? Happily, 
the answer to both of these questions is no. (Matroids might be a little boring if they 
arose only from matrices and graphs .)  A graph or matrix does provide a compact way 
of viewing the matroid, rather than listing all the bases. But this type of representation 
is just not always possible. When a matroid is isomorphic to the cycle matroid of some 
graph we say it is graphic. A matroid that is isomorphic to the vector matroid of some 
matrix (over some field) is representable (or matric). And not every matroid is graphic, 
nor is every matroid representable. 

To demonstrate this ,  it would be instructive to look at a matroid that is either not 
graphic or not representable. The smallest nonrepresentable matroid is the Vamos ma
troid with eight elements [9] , and it requires a little more space and machinery than 
we currently have to show that it is not representable. However, it is fairly simple to 
construct a small example that is not graphic, so let us focus on finding a matroid that 
is not the cycle matroid of any graph. 

Uniform matroids If we take a set E of n elements and let B be all subsets of E 
with exactly k elements, we can check that B forms the set of bases of a matroid on 
E . This is the uniform matroid, Uk,n • briefly mentioned earlier. In this matroid, any 
set with k elements is a maximal independent set, any set with fewer than k elements 
is independent, and any set with more than k elements is dependent. What are the 
circuits? Precisely the sets of size k + 1 . 

Let's consider an example. Let E be the set {a , b , c , d } and let the bases be all sets 
with two elements. This is the uniform matroid U2.4 . Is this matroid graphic? To be 
graphic,  U2,4 must be isomorphic to the cycle matroid on some graph; so, there would 
be a graph G, with four edges, such that all of the independent sets of the cycle matroid 
M(G) are the same as the independent sets of U2 .4 . All of the dependent sets must be 
the same as well . Since every set with two elements is a basis of U2,4 , and every set 
with more than two elements is dependent, we see that each three-element set is a 
circuit. Is it possible to draw a graph with four edges such that each collection of three 
edges forms a cycle? Try it. Remember, each collection of two edges is independent, 
so must not contain a cycle. 
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A careful analysis of cases proves that it i s  not possible to construct such a graph, so 
U2,4 is not isomorphic to the cycle matroid on any graph, and thus is not graphic . This 
matroid is, however, representable. A representation over lR is given below. Check for 
yourself that the vector matroid is  isomorphic to U2,4 (by listing the bases) .  

a 

[ �  
b 
0 
1 

c 
1 
2 

d 

i ]  
Notice that this representation is not unique over lR since we could multiply the 

matrix by any nonzero constant without changing the independent sets . Also notice 
that this is not a representation for U2,4 over the field with three elements lF 3 (the set 
{0 , 1 ,  2} with addition and multiplication modulo 3) .  Why? Because, over that field, 
set {c , d } is dependent. 

Harvesting a geometric example from a new field We just saw how a collection 
of vectors can be a representation for a particular matroid over one field but not over 
another. The ground set of the matroid (the vectors) is the same in each case, but 
the independent sets are different. Thus, the matroids are not the same. Let's  further 
explore the role the field can play in determining the structure of a vector matroid, with 
an example over the field of two elements , lF 2 • As above, the ground set of our matroid 
is the set of column vectors, and a subset is independent if the vectors form a linearly 
independent set when considered within the vector space (lF 2) 3 • 

a b c d 
0 0 1 
1 0 1 
0 1 0 

e 
1 
0 
1 

f 
0 
1 
1 

g 

i ]  
Consider the set {d , e ,  f } . Accustomed as we are to vectors in JR3 , our initial in

clination is that this is a linearly independent set of vectors. But recall that 1 + 1 = 0 
over JF2 . This means that each vector in {d , e ,  f } is the sum of the other two vectors . 
This is a linearly dependent set in this vector space, and thus a dependent set in the 
matroid, and not a basis. In fact, {d , e , f } is a minimal dependent set, a circuit, in the 
matroid, since all of its subsets are independent. 

The matroid generated by this matrix has a number of interesting characteristics, 
which you should take a few moments to explore : 

1 .  Given any two distinct elements, there is a unique third element that completes a 
3-element circuit. (That is, any two elements determine a 3-element circuit.) 

2. Any two 3-element circuits will intersect in a single element. 

3. There is a set of four elements no three of which form a circuit. (This might be a 
little harder to find, as there are G) = 35 cases to check.) 

Geometrically inclined readers might be feeling a tingle of recognition. The traits 
described above tum out to be precisely the axioms for a finite projective plane, once 
the language is adjusted accordingly. 

A .finite projective plane is an ordered pair, (P , C) , of a finite set P (points) and a 
collection C (lines) of subsets of P satisfying the following [ 5] : 
1 .  Two distinct points of P are on exactly one line. 

2. Any two lines from C intersect in a unique point. 

3. There are four points in P, no three of which are collinear. 
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Elements of the matroid are the points of the geometry, and 3-element circuits of 
the matroid are lines of the geometry. Our example has seven points, and this partic
ular projective plane is called the Fano plane, denoted F7 . The Fano plane is shown 
in FIGuRE 3, with each point labeled by its associated vector over lF 2 • Viewed as a 
matroid, any three points on a line (straight or curved) form a circuit. 

Figure 3 The Fano p l ane, F7 

We have already seen a variety of structures related to matroids, with still more to 
come. Ezra Brown wrote in The many names of (7 , 3 ,  1 )  [3] in the pages of this MAG
AZINE:  "In the world of discrete mathematics, we encounter a bewildering variety of 
topics with no apparent connection between them. But appearances are deceptive." 
In fact, now that we 've recognized the Fano plane as the Fano matroid, we may add 
this matroid to the list of the "many names of (7 , 3, 1 )" .  (For more names of F7 , the 
interested reader is referred, not surprisingly, to Brown [3] . )  

The Fano plane exemplifies the interesting fact that any projective geometry is also a 
matroid, though the specific definition of that matroid becomes more complicated once 
the dimension of the finite geometry grows beyond two. (Although the Fano plane has 
rank 3 as a matroid it has dimension 2 as a finite geometry, which is, incidentally, why 
it is called a plane. Oxley [9] gives further information.)  

We started with a vector matroid and discovered the Fano plane, so we already 
know that the Fano matroid is representable. The question remains, is it graphic? We 
attempt to construct a graph, considering the circuits cl = {a ,  b , d } , c2 = {a ,  c ,  e } , 
and C 3 = { b , c ,  f } . These would have to correspond to cycles in a graph representation 
of the Fano matroid. There are two possible configurations for cycles associated with 
C1 and C2 , shown in FIGURE 4. In the first we cannot add edge g so that {a ,  f, g } 
forms a cycle. In the second, we cannot even add f to form a cycle for C3 . (Since the 

Figure 4 Two poss i b l e  configu rations  
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matroid has rank 3 ,  the spanning tree must have three edges, s o  the graph would have 
4 vertices and 7 edges.) Thus,  the Fano matroid is not a graphic matroid. 

One last fact about the Fano plane [9] : Viewed as a matroid, the Fano plane is only 
representable over IF 2 · 

Matroi ds-what are they good for? 

Now that we have seen four different types of matroids, we consider their applications. 
Beyond unifying distinct areas of discrete mathematics, matroids are essential in com
binatorial optimization. The greedy algorithm, a powerful optimization technique, can 
be recognized as a matroid optimization technique. In fact, the greedy algorithm guar
antees an optimal solution only if the fundamental structure is a matroid. Once we've 
familiarized ourselves with the algorithm, we explore how to adapt it to a different 
style of problem. Finally, we will explore the ramifications, with respect to matroids, 
of the greedy algorithm's  success in finding a solution to this different style of problem. 

Walking, ever uphill, and arriving atop Everest Suppose each edge of a graph has 
been assigned a weight. How would you find a spanning tree of minimum total weight? 
You could start with an edge of minimal weight, then continue to add the next smallest 
weight edge available, unless that edge would introduce a cycle. Does this simple and 
intuitive idea work? Yes, but only because the operative structure is a matroid. 

An algorithm that, at each stage, chooses the best option (cheapest, shortest, highest 
profit) is called greedy. The greedy algorithm allows us to construct a minimum-weight 
spanning tree. (This particular incarnation of the greedy algorithm is called Kruskal 's  
algorithm.) Here are the steps :  

In graph G with weight funct ion w on the edges , initialize our set B :  
B = 0 . 
1 .  Choose edge e; of minimal weight . In case of ties , choose any of the 

t ied edges . 
2 .  If B U {e; } contains no cycle , then set B := B U {e; } ,  else remove e; 

from considerat ion and repeat previous step . 

The greedy algorithm concludes , returning a minimum-we ight spanning tree 
B .  

We will later see that, perhaps surprisingly, this approach will always construct a 
minimum-weight spanning tree. The surprise is that a sequence of locally best choices 
results in a globally optimal solution. In other situations, opting for a locally best 
choice may, in fact, lead you astray. For example, the person who decides she will 
always walk in the steepest uphill direction need not end up atop Mount Everest, and, 
indeed, most of the time such a walk would end instead atop some hill (that is, a 
local maximum) near her starting point. Or, back to thinking about graphs, suppose a 
traveling salesperson has to visit several cities and return back home. We can think of 
the cities as the vertices of a graph, the edges as connecting each pair of cities ,  and 
the weight of an edge as the distance he must drive between those cities .  What we 
seek here is a minimum-weight spanning cycle. It turns out that the greedy algorithm 
will not usually lead you to an optimal solution to the Traveling Salesperson Problem. 
Right now, the only way to guarantee an optimal solution is to check all possible routes .  
For only 10  cities this is 9 !  = 362, 880 possible routes. But for the minimum-weight 
spanning tree problem, the greedy algorithm guarantees success. 



3 6  MATH EMATICS MAGAZI N E  

What does this have to do with matroids? The greedy algorithm constructs a 
minimum-weight spanning tree, and we know what role a spanning tree plays in a 
graph's  associated cycle matroid. Thus, the greedy algorithm finds a minimum-weight 
basis of the cycle matroid. (Once weights have been assigned to the edges of G, they 
have also been assigned to the elements of M(G) .) Further, for any matroid, graphic 
or otherwise, the greedy algorithm finds a minimum-weight basis .  

1 0  

7 

Figure 5 G raph G with weights ass i gned to each of i ts edges 

Let's work through an example, based on the cycle matroid of the weighted graph 
shown in FIGURE 5 .  The greedy algorithm will identify a minimum-weight basis from 
the set of bases, B. It will build up this basis, element by element; thus, in the algo
rithm below, the set B will not actually be a basis for the matroid until the algorithm 
has concluded. (It will be an independent set throughout, but only maximal when the 
algorithm concludes.) We will use matroid terminology to emphasize the matroidal 
nature of the algorithm: 

Init i al i z e  our set B as B = 0 .  
1 .  The minimum weight e l ement i s  e7 , but it i s  rej e ct e d  s ince i t s  

inclu s i on would creat e  a c ircuit . ( I t i s  a l o op . )  B = 0 . 

2 .  Consider next smal l e s t  we ight e l ement e 1 . It creat e s  no c i rcuit s 

with the edge s in B , so set B = { e l } . 
3 .  Cons ider e6 : It creat e s  a c i r cuit with e 1 , so do not add it to B . 

B = { e J } . 
4 .  Consider e4 : It creat e s  no c i r cuit s with e 1 , so set B = {e 1 ,  e4 ) . 
5 .  Cons ider e3 : It creat e s  a c i r cuit with the current e l ement s of B , 

so do not add it to B . B = { e J , e4 } . 
6 .  Consider e2 : It creat e s  no c i r cuit s with the e l ement s of B , so set 

B = { e J , e2 , e4 ) . 
7 .  Cons ider the remaining e l ement , es . It creat e s  a c i r cuit with the 

e l ement s o f  B . B = l e 1 , e2 , e4 ) . 

The gre e dy algor ithm conc lude s , returning a minimum-we ight bas i s  

B = ! e 1 , e2 , e4 ) . 

None of these steps was actually specific to the graph-they all involve avoiding cir
cuits in the matroid. This is a matroid algorithm for constructing a minimum-weight 
basis, whether the matroid is graphic or not. 

Let u s  sketch a proof of why this algorithm will always produce a minimum-weight 
basis . Suppose the greedy algorithm generates some basis B = {e J . e2 , . . •  , e, } , yet 
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there exists some other basis B '  = {f1 , h ,  . . .  , fn } with smaller total weight. Fur
ther, without loss of generality, let the elements of each basis be arranged in order 
of ascending weight. Then w (e 1 ) = w (/1 ) , necessarily. Let k be the smallest integer 
such that w (fk) < w(ed . Consider the two independent sets I1 = {e 1 , • • •  , ek- l } and 
I2 = { /1 , • • •  , fd, and recall the observation we made earlier about two independent 
sets of different size. Since I I1 1 < I I2 1 we know there must be some ft , l :S k such that 
I1 U ft is independent. But this means ft is both not dependent on e 1 , • • •  , ek- l and has 
weight smaller than ek . So this is a contradiction, because the greedy algorithm would 
have selected ft over ek in constructing B. This contradiction proves that the greedy 
algorithm will find a minimum-weight basis .  (Oxley [9] gives more details . ) 

What is fascinating and quite stunning is that one may go further and define ma
troids using the greedy algorithm. That is, it turns out that any time the greedy algo
rithm, in any of its guises, guarantees an optimal solution for all weight functions, we 
may be sure that the operative mathematical structure must be a matroid. Stated an
other way, only when the structure is a matroid is the greedy algorithm guaranteed to 
return an optimal solution. (See Oxley [9] or Lawler [7] . )  We may, however, have to 
dig deep to find out what that particular matroid might be. 

( The greedy algorithm ) ( The underlying structure ) 
guarantees an optimal solution. {::::==} is actually a matroid. 

Figure 6 A stu n n i ng truth 

Finally, one other observation on the nature of matroids is in order. Once a particular 
matroid is defined, another matroid on the same ground set naturally arises, the dual 
matroid. The set of bases of this new matroid are precisely the set of all complements 
of bases of the original matroid. That is, given a matroid M on ground set E, with set 
of bases !3, we may always construct the dual matroid with the same ground set and 
the set of bases { B' c;: E I B' = E \ B , B E !3} . What is surprising is that this new 
collection of sets does in fact satisfy the basis axioms, and this fact has kept many 
matroid theorists employed for many years . In our current context, the reason this is 
particularly interesting is that any time the greedy algorithm is used to find a minimum
weight basis for a matroid, it has simultaneously found a maximum-weight basis for 
the dual matroid. Pause for a moment to grasp, and then savor, that fact. (In fact, the 
greedy algorithm is sometimes presented first as a method of finding a maximum
weight set of bases, in which case the adjective "greedy" makes a little more sense .) 

Is a schedule(d) digression really a digression? Lest we forget how important 
mathematics can be in the so-called "real world," let us imagine a student with a con
strained schedule. This student, call her Imogen, can only take classes at 1 PM, 2 PM, 
3 PM, and 4 PM. She's found seven classes that she must take sooner or later, but at the 
moment she has prioritized them as follows in descending order of importance: Ge
ometry (g), English (e) , Chemistry (c), Art (a) , Biology (b), Drama (d) , French (f) .  
The classes offered at i PM, denoted H; , are 

H, = {c , e , f, g } ,  Hz = {a , b , d} ,  H3 = {c ,  e , g } ,  H4 = {d , f } . 

Now the question is perhaps an obvious one: Which classes should Imogen take to 
best satisfy the prioritization she has set up for herself? Granted, it can be tempting in 
a small example to stumble our way through some process of trial and error, but let's 
demonstrate ourselves a trifle more evolved. Casting ourselves in the role of Imogen's 
advisor, we will attempt something akin to the greedy approach we saw above. Though 
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it would be  a rather busy schedule, we will allow Imogen to take four courses, if there 
is indeed a way to fill her hours . 

Since Geometry is Imogen's top priority, any schedule leaving it out must be con
sidered less than optimal, so we make sure she signs up for g. (This class is offered at 
two times, but for the moment we must suppress our desire to specify which hour we 
choose. )  What should our next step be? If we can add English, e , without blocking out 
Geometry, then we should do so. Is it possible to be signed up for both g and e? Yes, 
each is offered at 1 PM and 3 PM.  (We still need not commit her to a time for either 
class .) Can she take her third priority, Chemistry, c, without dislodging either of those 
two classes? No, because Chemistry is only offered at 1 PM and 3 PM. There are only 
two possible times for her top three priorities. What about her fourth priority, Art, a? 
Yes, she could take Art at 2 PM,  the only time i t  i s  offered. Imogen's next priority is 
Biology, b, but it is only offered at 2 PM, where it conflicts with Art. Finally we may 
fill one more slot in her schedule by signing her up for Drama, d, at 4 PM. 

Now her schedule is full, and she is signed up for her first, second, fourth, and sixth 
most important classes, and filled all her time slots . Better yet, she even still has some 
flexibility, and can choose whether she'd like to take Geometry at 1 PM and English 
at 3 PM or vice versa. As her advisor, we leave our office feeling satisfied with our 
performance, as we should, for if we were to search all her possible schedules, we 
would find that this is the best we could do. 

Why do we need powerful concepts like matroids and the greedy algorithm to tackle 
this problem? In this example, the problem and constraints are simple enough that 
trial-and-error may have allowed us to find the solution. But in more complicated sit
uations the number of possibilities grows massive. (This is affectionately referred to 
as the "combinatorial explosion.") If Imogen had eight possible times to take a class 
and a prioritized list of 17 classes, trial-and-error would likely be a fool 's errand. Simi
larly, in our earlier example with 25 computers in a network, constructing a minimum
weight spanning tree without the algorithm would be miserable : we would need a 
quadrill ion years to compare all possible spanning trees. Imagine an actual company 
with hundreds of computers ! Knowing that our structure is a matroid tells us that the 
algorithm will work, and the algorithm is an efficient way to tackle a problem where 
an exhaustive search might take the fastest computer longer than a human lifetime to 
compute. 

The hidden matroid For Imogen's schedule, at each stage we chose the best option 
available that would not conflict with previous choices we had made. This is another 
incarnation of the greedy algorithm, and in this type of scheduling problem it will 
always produce an optimal solution. (We omit the proof here for brevity's sake. See 
Bogart [2) or Lawler [7] for details . ) Since the greedy algorithm is inextricably con
nected to matroids, it must also be true that a matroid lurks in this scheduling example. 
Let's ferret out that matroid ! 

To identify the matroid, we need to identify the two sets in (E ,  B) . The first is fairly 
simple: E is the set of seven courses. Now which subsets of E are bases? 

The solution to the scheduling problem is actually an example of a system of distinct 
representatives (or SDR) [7] . We have four possible class periods available, and a 
certain number of courses offered during each period. A desirable feature of a course 
schedule for Imogen would be that she actually takes a class during each hour when 
she is available. We have a set of seven courses, C = {a , b , c , d , e, f, g } , and a family 
of four subsets of C representing the time slots available, which we've denoted H� o 
H2 , H3 , and H4 • We seek a set of four courses from C so that each course (element 
of the set) is taken at some distinct time (Hi ) .  The classes we helped Imogen choose, 
{a , d , e, g } , form just such a set; a distinct course can represent each time. Formally, a 
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set S i s  a system of distinct representatives for a family of sets A 1 ,  • • •  , An i f  there exists 
a one-to-one correspondence f :  S ---+ {A 1 ,  • • •  , An } such that for all s E S, s E f (s ) .  
These problems are often modeled using bipartite graphs and matchings. Bogart [2] 
and Oxley [9] give details. 

The greedy algorithm returns a minimum-weight basis ;  in our example that basis 
was an SDR. It turns out that any system of distinct representatives for the family of 
sets H1 , Hz , H3 , H4 is a basis for the matroid; that is, B = {S � C I S is an SDR for 
family H1 , Hz , H3 , H4 } .  The SDR we found was minimum-weight. (Imogen defined a 
weight function when she prioritized the classes.) 

We now know the matroid, but which sets are independent in this matroid? Gone 
are the familiar characterizations like "Are the vectors linearly independent?" or "Do 
the edges form any cycles?" Thinking back to the definition of independence, a set is 
independent if it is a subset of a basis .  In our example, a set S � C will be independent 
when it can be extended into a system of distinct representatives for H1 , Hz , H3 , H4 . 
This is a more unwieldy definition for independence. But there is a simpler way to 
characterize it. As long as a subset of size k (from C) can represent k members of the 
family of sets (the Hi s), it will be possible for that set to be extended to a full SDR 
(assuming that a full SDR is indeed possible, as it was in our example) . Naturally, this 
preserves the property that any subset of an independent set is independent; if some 
set S can represent I S  I members of the family of sets, then clearly any S' � S can also 
represent I S' I members of the family of sets . 

So it turns out that (E, B) forms a matroid. By definition, SDRs must have the same 
number of elements, and thus no SDR can properly contain another, satisfying the first 
condition for the bases of a matroid. 

A full proof of the basis exchange property for bases would be rather involved, so 
let's examine one example to see how it works in this matroid. Consider two bases, 
B1 = {b, c , d , f } and B2 = {a , d , e , g } .  Again, each of these is an SDR for the family 
of sets H1 , H2 , H3 , H4 . In a full proof, we would show that for any element x of B, , 
there exists some element y of Bz such that (B1  \ x) U y is a basis, which in this case is 
an SDR. For this example, consider element d of B1 • We must find an element of Bz to 
replace d, and if we do so with e we find that, indeed, the resulting set B3 = { b, c , e , f } 
is an SDR, as shown in TABLE 1 .  

TAB L E  1 :  Th ree S D Rs and the sets they represent 

Time Set B, Bz B3 = (B1  \ d) U e 
1 PM H, French Engl. or Geom. Chemistry 
2 PM Hz Biology Art Biology 
3 PM H3 Chemistry Engl. or Geom. English 
4 PM H4 Drama Drama French 

Notice that in Bz, there are options for which class will represent H1 and H3 . In 
defining the SDR, we need not pick a certain one-to-one correspondence, we just need 
to know that at least one such correspondence exists. Note also that the sets represented 
by f and c changed from B 1 to B3 . Finding a replacement for d from Bz forced the 
other classes to shuffle around. This is a more subtle matroid than we've yet seen. (You 
may also have noticed that we could have just replaced d from Bz when building B3 . 
But, wouldn' t that have been boring?) 

What if Imogen had chosen a list of classes and times such that it was only possible 
for her to take at most two or three classes? Even in situations where no full system 
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of distinct representatives i s  possible, there exists a matroid such that the bases are 
the partial SDRs of maximum size. Any matroid that can be realized in such a way 
is called a transversal matroid, since SDRs are usually called transversals by matroid 
theorists. Such a matroid need not be graphic (but certainly could be) . The relationship 
between the types of matroids we have discussed is summarized in the Venn diagram 
in FIGURE 7 .  

All Matroids 

Figure 7 Matro ids  you have seen 

Matro ids you have now seen 

Where you previously saw independence you might now see matroids . We have en
countered five matroids: the cycle matroid, the vector matroid, the uniform matroid, the 
Fano matroid, and the transversal matroid. Some of these matroids you have known, 
some are new. With the matroid, we travel to the worlds of linear algebra, graph theory, 
finite geometry, and combinatorial optimization. The matroid is also tied to endless 
other di screte structures that we have not yet seen. We have learned that the greedy al
gorithm is a characterization of a matroid: when we have a matroid, a greedy algorithm 
will find an optimal solution, but, even more surprisingly, when a greedy approach 
finds an optimal solution (for all weight functions), we must have a matroid lurking. 
Once, we have even found that lurking matroid. 

Do you now see matroids everywhere you look? 
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Letter to the Ed i tor :  Arch i medes, Tay l o r, a n d  R i c h ardson 

The enjoyable article "What if Archimedes Had Met Taylor?" (this MAGAZINE, October 
2008, pp. 285-290) can be understood in terms of eliminating error terms. This leads to 
a different concluding approximation that is more in the spirit of the note by combining 
previous estimates for improvement. We denote the paper's  weighted-average estimates 
for JT based on an n -gon by An , using area, and Pn , using perimeter. The last section 
shows two formulas, 

JT S  
7T 7 

Error(perim) = Pn - 7T = 20n4 + 56n6 + · · · 
and 

2n 5 2n7  
Error(area) = An - 7T = 1 5n4 + 63n6 + · · · , 

where we have corrected the first term in the latter. A combination of 8/5 of the first and 

-3/5 of the second will leave O ( l j n6 ) error. So, the last table could show 

8 3 
S p96 - S A96 = 3 . 1 4 1 59265363 . 

This approach could be used alternatively to justify 

1 2 An = 3 Aln + 3 ACn , 
where Aln and ACn are inscribed and circumscribed areas respectively, by subtracting 
out the 1 j n 2 error terms and leaving the corrected error formula above. For general inte
gration, a similar derivation motivates Simpson's rule as the combination of 1 /3 trape .. 
zoidal rule plus 2/3 midpoint rule. This is more than a coincidence since the inscribed 
area connects arc endpoints as in trapezoidal rule and circumscribed area uses the arc 
midpoint. 

The technique of combining estimates to eliminate error terms is known as Richard
son's Extrapolation in most numerical analysis textbooks. It is usually applied to halving 
step-size in the same approximation formula. For example, Archimedes could have com
puted 

1 6 1 - Pg6 - - P4s = 3 . 1 4 1 59265337, 
1 5 1 5 

if Taylor could have whispered these magical combinations. 

-Richard D.  Neidinger 
Davidson College 

Davidson, NC 28035 
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( 1 )  

Ours involves probability. Say you flip a fair coin until it lands heads and count the 
number of flips that takes. The probability that it takes one try is 1 /2, the probability 
that it takes two tries is 1 j 4, and so on. The probability that it never lands heads is 
zero, so ( 1 )  just says that the sum of all probabilities is certainty, or 1 .  

In the language of probability, we say that the set of all possible outcomes to our 
flipping experiment, the sample space, has been partitioned into disjoint events-they 
exhaust the sample space. An intuitively appealing fact is that when disjoint events 
exhaust the sample space, their probabilities sum up to 1 ,  and that is the heart of ( 1 ) . 

Students are sometimes unsatisfied when all they can say about an infinite series 
is that it converges, with no information about the sum. Of course, they have their 
geometric and telescoping series, whose limits are easily computed. And once Taylor 
series are on the table, students can use them to sum more complicated series, as long 
as the corresponding functions are known. 

As our first example suggests, probability is a rich source for constructing infinite 
series with known sums. In a variety of examples, we define a random phenomenon 
and disjoint events E; for i = 1 ,  2, 3, . . . that exhaust the sample space, S, so that 

00 L P (E; ) = P (S) = 1 .  i= l 
Whenever we can calculate P (E; ) ,  we have another series that "probably" converges 
to 1 . Some of these series are familiar, others are less common. Of course, our stu
dents might think we are cheating here, since we are not finding the sum of a given 
convergent series; still we enjoyed finding lots of series that converge to one. 

Coin f l ipp ing ser ies 

Let's flip a possibly unfair coin until it lands heads. Say that heads occurs with prob
ability p, where 0 < p < 1 ,  and call E; the event that the first head appears on the 

42 
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i th flip of the coin. In order for this to happen, the coin must have landed tails i - 1 
times, each time with probability q = 1 - p, and then landed heads. This means that 
P(E; ) = p ( l  - p)i - 1 = ( 1  - q)q;- 1

• If we are sure that these events exhaust the 
sample space, we conclude 

00 00 00 
1 = P (S) = L P (E; ) = L::o - p) i - 1 P = L::o _ q)q i - 1 . 

i= 1 i= 1 i= 1 

which is the known sum of the geometric series for 0 < q < 1 .  Unfortunately, since 
probabilities must be positive our methods do not work on the other half of the domain 
of the geometric series where - 1  < q < 0. 

It seems intuitively obvious that our coin must lands heads at some point. For a 
formal justification that the events E; exhaust the sample space, let 's focus on long 
runs of tails .  Let F; be the event that all i tosses are tails, so that S \ U� 1 E; = n� 1 F; . 
Now P(F; )  = q ; ,  so lim;�00 P(F; )  = 0, which means S = U� 1 E; . 

We pause for a moment to note that in all our examples S \ U� 1 E; may be 
nonempty, but it can always be shown to have measure 0. In terms of probability, 
it is safe to say that S = U�1 E; . 

Generalizing this approach, let us fix an integer j and continue to flip our coin (the 
one that lands heads with probability 0 < p < 1 )  until j heads appear. Let E/ be the 
event that the jth head appears on the i th flip and let us assume for the moment that 
these events exhaust the sample space. 

Since P ( E/ ) = G =-D pj ( 1  - p ) ; -j , a count of total probability gives 

after re-indexing. Readers might recognize this last expression as the total probability 
of a negative binomial random variable. This series may also be familiar as 

1 00 (k + j) k 
( 1  - q)j+ 1 = {; k q 

' 

which can be obtained by taking j derivatives with respect to q of the standard geo
metric series. 

To verify that the events exhaust the sample space, let F;k be the event of obtaining 
exactly k heads among i tosses of the coin. We compute 

1. P (Fk) - I" ( i ) k i-k - 1" i (i - 1 )  . . .  (i - k + 1 )  (!!.) k ; lm · - lm p q  - lm q i�oo 1 i�oo k i�oo k! q 

. l p j · k ( ) k 
� hm - - q = 0 , hoo k! q 

since an exponential function dominates a power function. Hence, we must eventually 
obtain j heads and so S = U�

j 
E/ . 

We now consider flipping a coin until a run of 2 consecutive heads appears. Let E; 
be the event that the first instance of 2 heads in a row occurs on flips i - 1 and i ,  and 
let F; be the event that the first i tosses contain no such run. To calculate P (E; ) we 
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use the general idea from Berresford's paper [1] . The first few events are exceptional : 
P ( £ 1 ) = 0, P (E2) = p2 , and P ( £3 )  = qp2 • For i > 3 , P (E; ) = P ( F; _3)qp2 , since a 
run of two heads appearing for the first time on flip i requires that the last three tosses 
are THH and no run of two heads occurs earlier. 

We now must calculate P ( F; ) . First, P (F1 ) = 1 and P ( F2) = 1 - p2 • In the event 
F; , the i th toss may be either T or H, and in the latter case the previous toss was T, 
so P ( F; ) = q P ( F; _ J ) + pq P ( F; _2) . Solving this recurrence relation for p = 1 /2,  we 
obtain 

p 
F = 

5 + 3 -JS ( 1 + .JS) ; 
5 - 3-JS ( I  - .JS) ; 

( 
,
) 

1 0  4 
+ 1 0  4 

Note that each term in parentheses is less than 1 ,  so lim;-+oo P (F; ) = 0. This is what 
we need to conclude that 

1 
= 

� � � � 5 + 3-v's ( 1 + v's) i 5 - 3 -v's ( 1 - v's) i 
4

+
8

+
8 L.. 1 0  4 

+ 
1 0  4 t = l 

Readers may enjoy working this out for general p and q . With a bit of  work, one finds 
that ( I + v's) /4 is replaced by (q + Jq2 + 4pq ) j2.  

Factorials and products from marbles in bags Start with a bag containing one 
blue and one red marble. We continue to remove marbles from the bag under the rule 
that if we select a red marble from the bag we put back the red marble along with an 
additional red marble . The game ends once a blue marble is selected. Some games may 
take a long time to end, so let's suppose we have a magical bag that can accommodate 
any number of marbles. This is a variation of Polya's Urn Scheme. 

Let E; be the event that the blue marble is selected on the ith draw from the bag. To 
begin with, P ( E 1 ) = 1 /2, and 

P ( E; ) = ( 1 - P ( £1 ) ) ( 1 - P (£2) )  · · · ( 1 - P (E; _ J ) ) ( 1 / (i + I ) )  
2 3 i - 1 

2 3 4 i + I  i (i + 1 ) 

Again, we need to show that the events E; exhaust the sample space. Let F; be 
the event that i red marbles are selected and note that P ( F; ) = 1 / ( i + I )  so that 
lim;-+oc P ( F; ) = 0. The series here is just the standard first example of a telescoping 
series, but things quickly become more interesting. 

Let us change the rules so that if a red marble is chosen we put back the original red 
along with two more red marbles. Again P (E 1 ) = I j2, but subsequent steps require 
double factorials : 

P (E; ) = ( I - P (£ 1 ) ) ( 1 - P (E2) )  · · · ( 1 - P (E; _ 1 ) ) ( 1 / (2i ) )  

(2i - 3) ! !  
(2i ) ! !  

where n ! !  = n (n - 2) (n - 4) · · · 2 (or 1 ) i s  the double factorial. (By convention, 
( - 1 ) ! !  = 1 . ) With F; defined as above we can show that 

. . (2i - 1 ) ! !  . (2i ) ! hm P ( F; ) = hm . = hm -. -. - = 0, i--+oo i-+oo (2z ) ! !  i-+oo (2' z ! ) 2 
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using Stirling's formula n ! ,....., nn e-n $li to prove that (2i ) ! / (2; i ! ) 2 ,....., ,J4liij2n i .  
Hence, we conclude that 00 00 (2i - 3) ! !  1 = P (S) = L P (E; ) = L . " . i = l  i = l  (2t ) . .  (2) 

To generalize further, start with a bag that has b > 0 blue marbles and r > 0 red 
marbles. Remove marbles from the bag until a blue marble is chosen, under the rule 
that when a red marble is removed we add l blue marbles and d + 1 red marbles. Events E; and F; have the same definitions. In this scenario we see that P (£ 1 ) = b/(b + r) , 
and b + (i - 1 )l P (E; ) = ( 1  - P (£1 ) ) ( 1  - P (E2))  • • • ( 1  - P (E; _ J ) )  . . b + (l - 1 ) /  + r + (l - 1 )d 
To show that the whole sample space is covered, notice that i - l  r + j d  00 r + jd P ( F )  = fl and so lim P ( F )  = fl . ' j=O b + r + j (l + d) '  i-->oo ' j=O b + r + j (l + d) 
If the the log of the product approaches - oo ,  the product approaches 0, so consider 

f ( r + jd ) j= l  In b + r + j (l + d) . 
The integral test gives the desired result: 

100 In ( r + xd ) dx = - oo .  
1 b + r + x (l + d) 

Intuitively, for j sufficiently large, (r + jd) / [b + r + j (l + d) ]  � dj(l + d) , which 
is less than one when l =!= 0; thus the limit of the product is zero. 

Calculating the first few probabilities 

P (E ) - _b_ P (E ) - r (b + l) and 1 - b + r '  2 - (b + r ) (b + r + l + d) r (r + d) (b + 2l) P (E3 ) = (b + r ) (b + r + l + d) (b + r + 2l + 2d) ' 
leads to the general result 

b + (i - 1 )/ i - l  r + j d  P (E; ) = r + (i - 1 )d  D b +  r + j (l + d) · (3) 
The two cases above, the original telescoping series and (2) , arose from (b , r, l , d) 

equal to ( 1 , 1 , 0, 1) and ( 1 , 1 , 0, 2) . In the case ( 1 , 1 , 0, 0) and, in fact, whenever b = r 
and l = d, the complicated formula (3) reduces to 1 /2; and the series is just ( 1 ) , since 
these cases are the same as flipping a fair coin. Some other cases that work out nicely 
are ( 1 , 1 , 1 , 0) , ( 1 , 1 , 2 , 0) , (k , 1 , 0, 1) (k > 1 ) , and (b , r, b , r ) : 

1 - � i 
- f:r (i + 1 ) ! ' 

� k (i - 1 ) ! k !  1 = L...., , i= l  (k  + i ) !  and 

00 2i - 1 1 - ""' - 8 2i (i ! ) , 
oo b ( r ) i  1 - 2: - -- i=l  r b + r 
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As an exercise, readers can show that the first three are telescoping series and the last 
is a special case of the geometric series. 

For one more layer of complexity, let' s start with a bag containing b > 0 blue mar
bles and r > 0 red marbles. In this case, if a red marble is removed at the i th tum we 
add i x l blue marbles and i x d + 1 red marbles. Again we have P(£1 ) = b/(b + r) . 
Conditioning on the previous draw and using I:�= I k = n (n + 1 ) /2 we discover that 

2b + i (i - 1 )l n 2r + J (J - l )d 
P (E; ) = 2r + i (i - 1 )d j= 1 2b + 2r + J (J - l ) (l + d) . 

As usual we let F; be the event that i consecutive red marbles are selected. The 
event F; is calculated in essentially the same manner as E; except that the last draw is 
now a red instead of a blue. Hence, 

IT; 2r + j (j - l )d 
p F -( 

,
) -

j=l 2b + 2r + j (j - 1 ) (1 + d) · 

In this case, lim;-+oo P(F; )  does not always equal 0. For instance, when l = 0 and 
d = r = b we discover, according to Hansen [3] and Mathematica, that 

lim P (F; )  = . . = cosh -- sech -- � 0. 1455 .  
ITOO 2 + j (j - 1 )  

(.J!Jr ) (v'IS:rr ) i-" :xo j = I 4 + j (J - 1 )  2 2 

Intuitively this makes sense since we are continually adding a lot of red marbles 
and no blue marbles thus making it possible never to draw a blue marble. But now 
S = F U (ur:;,1 E; ) ,  where F is the event that a blue marble is never drawn. Hence, 

00 

( .j7 :rr ) ( v'I5 :rr ) 1 = P (S) = P (F) + 8 P (E; ) = cosh -
2
- sech -

2
-

oo [ 2 i 2 + j (j - 1 )  ] + 8 2 + i u - 1 )  D 4 + 1 (j _ 1 )  · 

On the other hand, if we let d = 0 and r = b = l ,  adding more blue marbles than red, 
then 

and so 

lim P(F; )  = lim n . 
2
. ::::; lim n � ::::; lim (�) ; 

= 0, i-+oo i--+oo j= l 4 + j (J - 1 )  i--+oo j=l 4 i--+oo 4 

(4) 

For a slight variation we can start with b > 0 blue marbles in the bag and r > 0 red 
marbles and continue to select marbles until a blue is chosen, under the rule that if a 
red is chosen at the i th tum we add l · i !  blue marbles and d · i !  + 1 red marbles. In 
this case, calculating in the same manner, we find that P (£1 ) = b/(b + r) ,  P (E2) = 
r (b + l ) / (b + r ) (b + r + l + d) , and for i > 2 

. 
_ r [b + z I:��

�
� k !] 

fl
i- l r + d L:{= 1 k !  P (E, ) - . I . , 

(b + r) [r + d L��� k !] j= l b + r + (l + d) I:�= I k !  
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and 

r i - l  r + d "Vi k !  
P(F; )  = --

n L...k= l . . 
b + r i=l b + r + (l + d) L:i= l k !  

For d = 0 and r = b = l we have 

1 i - 1 1 
P(F; )  = 

2 D 1 + Lk=o k ! ' 
and clearly lim;�00 P(F; )  = 0 and so 

1 1 00 L:��� k !  1 = - + - + I: . I . . 2 3 i=3 2 [1��� [ 1 + L:i=o k ! ]  
On the other hand, for l = 0 and r = d = b, we find that 

1 i- 1 "Vi k ' 
P(F; )  = - n L...k=� . . 2 i= l 1 + L:i=o k !  

47 

(5) 

(6) 

In this case, we don't necessarily expect the limit to be 0 since we are adding a lot of 
red marbles but no blue marbles. In fact, Mathematica suggests that the limit is around 
0.23 . We leave it as a challenge to the reader to calculate the limit or at least show that 
it is positive (or wait until the next section to see why). 

In yet another variation, we start with b > 0 blue marbles and r > 0 red marbles in 
the bag, but this time if a red is chosen at the i th tum add z i blue marbles and di + 1 
red marbles. Here P (E 1 )  = bf(b + r ) ,  P (E2) = r (b + l ) / (r + b) (r + d + b + l ) ,  

and 

r [b + "i zk ] i- 1 r + "Vi dk 
P (£ . ) = L...k= l n L...k= l 

I (r + b) [r + L�= l dk] i= l r + b + Lk= l dk + Lk= l [k ' 

r i- 1 r + "Vi dk 
P(F)  = --

n _L...k= l . . 1 r + b i= l r + b + L:i= I dk + L:i=I [k 
When d = 0 and b = r = l > 1 ,  we have 

. 1 hm P(F; )  = . 1 = 0, hoo 2 [1��1 [2 + ( 1 - ri+ l ) j ( l - r) ]  

P (E1 ) = 1 /2, P (E2) = 1 /3 , and for i > 2 
(ri - l  + r - 2) (r - 1 ) ;-z 

P (E; ) = . I ' 2 [1��1 [ri + 2r - 3] 
which yields, in the specific case when r = 2, the series 

1 1 00 2i-2 
1 = - + - + I: . I . 2 3 i=3 TI��� [2i + 1 1 

(7) 

Of course, when r = b and l = d, we again come up with the sum given in ( 1 )  since 
the bag always has equal amounts of red and blue marbles. We leave it to the reader 
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to check this if they wish. For the case l = 0 and b = r = d we don't expect P ( F; ) to 
converge to 0 so we leave that case alone. 

Certainly there are other avenues to pursue since there are many possibilities of 
what to put back in the bag. We could also stop when we have chosen k blue marbles 
in a row instead of just one. We could also put more than two colors of marbles in the 
bag : we could have red, blue, and green marbles and stop if a red is chosen on an even 
draw or a blue is chosen on an odd draw, while adding marbles after each draw. 

Connect ions and conclus ions 

It is well known [2, Theorem 3 .20] that 2:::1 an and fl:1 (1 + an )  either both con
verge or both diverge. Taking the log of the product the series 2::: 1  log ( l  + an )  be
haves just like the other two. As an application, we can show that for {an } positive, 
n:, an /0  + an )  is positive if and only if I:: I 1 /an converges, since 

log (fJ �) = f - log ( 1 + 2_) , 
n= l 1 + an n= l  an 

which converges to a nonzero value if and only if 2::: 1  1 /an converges. This shows 
that the limit in (6) must be positive, since the choice a11 = L�=O k! guarantees the 
convergence of 2::: 1  l /an . 

To prove another corollary we need the fact that for {an } positive, 

which follows by replacing a; with 1 + a; - 1 to make the sum telescope. Hence, for 
an positive, we conclude 

if 
i = l  

and 

diverges , 

00 

if L a; converges , 
i = l  

both of which follow from the relationship between 2::� 1 a ;  and n:, o + an ) .  

(8) 

(9) 

Many of our results can be derived from these facts . For example, take a; = 1 + G) 
to derive (4) , a; = L�= ' (k - 1 ) !  to obtain (5) and a; = 2; to get (7). Since our methods 
provide a probabilistic interpretation of these special cases of (8) and (9), it is natural 
to wonder whether they can be used to prove (8) and (9) in general . Indeed, they can 
as the following shows: 

Given a sequence of positive numbers an , define a game where on the i th turn we 
throw a dart at a unit square board. The game ends if the dart lands in the region of the 
square below height a; I ( 1 + a; ) and continues if it lands above that height. Let E; be 
the event that the game ends at the i th turn and F; be the event that the game continues 
to the next turn. Calculation shows that P (F1 ) = 1 / ( l  + a 1 ) and so 

1 i 1 
P (F; )  = P (F;- I )-- = n --

1 + a; n= l 1 + an 
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and 

h. .  ni 1 P (E; ) = P (F;_ 1 ) P (  1ttmg target area on the i th throw) = a; --- . 
n= l  1 + an 

4 9  

Finally, with F = n�1 F; and S = U�1  E ;  U F we see that (8 )  and (9 )  are equivalent 
to the fact that P (S) = 1 ,  and that L�! a; converges if and only if n�, ( 1  + a; ) 
converges. 

Of course, there are series that we have not yet derived by these methods, such 
as 2::, 6j (nn)2 = I and l::o 1 / (n !  e) =  1 .  More generally, if we have a series of 
positive terms is there always a corresponding probabilistic scenario? 

Acknowledgment. We would like to thank Warren Johnson who carefully read this paper and provided numerous 

thoughts that greatly improved it. 

R E F E R E N C ES 
I .  G. Berresford. Runs in coin tossing: Randomness revealed. College Math. J. 33 (2002) 3 9 1 -394. 

2.  Daniel D. Bonar and Michael J .  Khoury, Real Infinite Series, MAA, 2006. 

3. E. R. Hansen, A Table of Series and Products, Prentice Hall, Englewood Cliffs, NJ, 1 975 .  

F l ip the Script: From Probabi l ity to Integration 

D A V I D A .  R O L L S  
The U n ivers i ty of Mel bourne 

Parkv i l le, V I C, 3 01 0, AUSTRALIA 
D. Ro l l s ® m s . u nimelb .edu .au  

Sometimes in mathematics we can reinterpret a problem or a result to advantage. The 
problem becomes easier to solve, or the result becomes even more useful. For an easy 
example from probability, imagine calculating the integral 

( 1 ) 

The integrand resembles f(x) = 3e-3x , x ::::: 0, the probability density function (p.d.f. ) 
of a rate 3 exponential probability distribution. Although they differ by a multiplying 
constant, that's easy to address, and we can write 

e-3x dx = - 3e-3x dx = - ( 1 )  = - .  100 1 1oo I 1 
0 3 0 3 3 

The key point is that the integral of a p.d.f. over its domain must be one. Compare that 
with the standard calculus approach using a substitution u = -3x and a limit for the 
improper integral 

e-3x dx = lim e-3x dx = lim - eu du 
1oo 1 t 1 l o 

0 f -+ 00  0 f -+ 00  3 -3t 

= � lim eu I 0 
= � - 0 = � .  

3 f -+ 00  
-3t 3 3 
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Which solution would you rather use? Now, imagine calculating 

1oo �5 2xy e-2x dy dx 

in your head. Think about it for a moment, then read on ! 

(2) 

Obviously, students take calculus-based probability after a number of calculus 
courses where they exercise their skills of integration, including integration by parts 
and improper integrals .  But after the course in probability, what might be said about 
calculus that couldn't  be said before? This note illustrates a few such points, primarily 
by interpreting integrands as familiar probability density functions . Monte Carlo inte
gration is also discussed as a technique to approximate integrals .  To do this, integrands 
must again be interpreted in terms of probability density functions . 

Definitions from probability 

Suppose X is a continuous random variable, meaning that X assigns a real number 
to every possible outcome of some particular experiment [10, p. 1 87] . Then there is a 
nonnegative function f called the probability density function (p.d.f.) ,  or simply the 
probability density, that we use to compute probabilities. A key property of probability 
densities is 

i: f (x)  dx = 1 .  

The expected value (also called the mean) of X and g (X) [10, pp. 1 9 1-192] are defined 
to be 

E [X] = i: xf(x) dx and E [g (X)]  = i: g (x )f(x)  dx (3) 

respectively, where g is a real-valued function. 
Let us review two common examples of continuous distributions . The rate A. expo

nential distribution has density 

j(x)  = { Ae-icx ' 
0, 

x � O 
otherwise 

and mean 1 /A. .  The uniform distribution on the interval [a , b] has density 

f(x)  = I b � a '  
0, otherwise 

and mean given by the midpoint (a + b) /2. (Note that inclusion of the endpoints is 
optional for continuous distributions since they don' t  change the value of an integral . )  
Sometimes probability densities are specified using only the nonzero portion, with the 
function understood to be zero elsewhere. 

The univariate definitions extend to n dimensions, imagining jointly continuous 
random variables X I · . . .  , Xn [10, Section 6. 1 ] .  Then for the joint p.d.f. 
/x 1 . . . . . x. (XI ,  . . .  , Xn ) we have 

100
• • · 100 

fx1 , . . .  , Xn (x i , . . .  , Xn ) dxi · · · dxn = 1 
-00 -00 
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and for the expected value of g(X 1 , • . •  , Xn ) where g is real-valued, we have 

E[g (XJ , . . .  , Xn ) ]  = i: · · · i: g (X J , . . .  , Xn ) fx1 • . . .  , Xn (X J , . . .  , Xn ) dX J  · · · dXn . 

Expected value behaves in a linear fashion: For any constants a and b 

E [aX + b] = aE [X] + b . 

The condition that X1 , • • •  , Xn are independent [10, Section 6.2] is equivalent to 
saying for all (x 1 , • • •  , Xn ) E JRn the joint density factors as 

where /x1 (xJ ) , . . .  , /x 1 (xn ) are all univariate densities. In this case 

where g1 , g2 , • • .  , gn are real-valued functions. 

Making qu ick work of in tegrals 

So, how might we reinterpret to advantage? Imagine calculating the integral 

which resembles the integral in ( 1 )  but adds integration by parts into the mix. Again, 
we can think of a rate 3 exponential distribution, which has mean 1 /3 . By (3) we have 

xe-3x dx = - x (3e-3x )  dx = - E [X] = - .  100 1 100 1 1 
0 3 0 3 9 

It takes longer to write down the integral than to compute it ! 
For a simple bivariate example, consider the slightly tedious but straightforward 

integral 

/1 = 1 1 1 1  (x + y) dx dy . 

To the student of probability, if X and Y are random variables with uniform distribu
tions on [0, 1 ]  we have 

1 1 h = E[X + Y] = E [X] + E[Y]  = 2 + 2 = 1 

since expected value behaves in a linear fashion and the mean of a uniform distribution 
is the midpoint of its interval of definition. The joint p.d.f. here is the constant 1 over 
the interval of integration. 

A slightly more advanced example is the integral 

h = � 3 � 3 
(x + y) dx dy . (4) 
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Corresponding to each integral i s  an interval [ 1 ,  3 ] .  A uniform distribution on this 
interval has p.d.f. 

f (x ) = { � ' 0, 
1 s x s 3 

otherwise. 

We can form a joint p.d.f. f (x , y) here as the product f (x , y) = f (x) f (y ), so 

h = 22 13 13 (x � y) 
dx dy = 4E[X + Y] I I 2 

= 4(E [X] + E [Y]) = 4(2 + 2) = 16 .  

This idea extends so easily. Try calculating 

13 
· · · 13 

(x 1 + · · · + x1 0) dx1 · · · dx10 . (5) 

Again, the idea is to write the integral using an integrand that is a legitimate density. 
How does your calculation time compare with the time just to type the iterated integrals 
into Maple? 

The intervals of integration need not be the same, and the integrand doesn' t have to 
be a sum. In fact, the distributions need not be the same either. Consider the integral 

h = 100 15 2xy e-Zx dy dx 

mentioned earlier in (2). Thinking of X as a rate 2 exponential distribution, and Y as a 
uniform distribution on [ 1 ,  5 ] ,  the integrand resembles (up to a constant) an expected 
value using a joint density which is the product of the two densities 

fx (x) = { 2e-2x ' 
0, 

x ;:: O 
otherwise 

and { I 4 >  fy (y) = 
0, 

1 s y s 5 
otherwise. 

Thus, we can treat X and Y as independent. Since we know E [X] = 1 /2 and E[Y] = 3 
we have 

h = 4100 15 xy fy (y) fx (x) dy dx = 4E[XY] = 4E [X]E[Y] = 6. 

Monte Carlo integrati on 

The idea of using probability to calculate integrals really shows benefits in one of 
the applications of Monte Carlo methods [9] called Monte Carlo integration [2, pp. 
670-672] , [3, pp. 2 1 3-22 1 ] .  Monte Carlo methods are a popularization of statistical 
sampling techniques that started with an idea of the mathematician Stanislaw Ulam 
in the early 1 940s. He conceived the idea as an attempt to approximate the proba
bility of winning at solitaire, where combinatorics leads to an exponential explosion 
in the number of possible configurations of playing cards. About this he said, "In a 
sufficiently complicated problem, actual sampling is better than an examination of all 
the chains of possibilities" [11 , p. 1 97] .  The term itself seems to have been coined 
by Nicholas Metropolis [8, p. 1 27] ,  a colleague and co-author of Ulam, partly in con
nection to an uncle of Ulam's who would borrow money to visit the casino in Monte 
Carlo, one of the districts of the Principality of Monaco. 
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The idea of  Monte Carlo integration i s  to use probabilistic simulation to compute 
an estimate of the true value of the integral. As above, the key point is to find a density 
that allows interpreting the integrand in terms of probability. For the integral in ( 4 ) , 
imagine simulating 2N independent random values {X 1 , . . . , X N } and { Y1 , . . . , Y N } , 
all from a uniform distribution on [ l , 3 ] .  Then an estimate of I 2 is given by 

A l 
N 

IN = 4- �)X; + YJ N i= 1  
and by the Strong Law of Large numbers , with probability 1 ,  a s  N ---+ oo 

A 1 N 
IN = 4- :�.)X; + Y; ) ---+ 4E[X + Y] = fz . N i = l  

(6) 

Unlike with deterministic methods such as Riemann sums, 10 simulations using 
Monte Carlo integration can yield 10 different estimates, depending on the particular 
random values that have been generated. For example, five simulations using (6) and 
either N = 5 or N = 5000 yielded the estimates in TABLE 1 .  Larger N reduces the 
variance of the estimate-that is, a collection of estimates is more closely clustered 
around the true value. Such simulations can by done with a variety of computer tools 
and languages such as R, Maple, and C, which provide pseudorandom values using 
some mathematical algorithm. 

A measure of the quality of the estimate f N is its variance. The smaller the variance, 
the tighter the clustering of the estimates, thus increasing the confidence that the error 
is small. It is also possible several distributions, and so several densities, could be 
used to generate estimates of the same integral. Smaller variance for similar N is a 
good reason to prefer one over the other, assuming computation time is comparable. 
In fact, there are a number of more advanced schemes designed to reduce variance in 
the estimate. 

TAB L E  1 :  Five est imates of (4) u s i n g  N = 5 (top row) and N = 5 000 (bot
tom row) . Larger N lowers the var ia nce-the est imates are more c l ose ly  
c l u stered aro u n d  the t rue va l ue of  s i xtee n .  

Is 1 6. 8 1 970 14.46337 1 7 .4096 1 2  14.604 1 3  1 6 .40 1 83 
Isooo 1 6.0 1 292 1 5 .98240 1 6.080 1 3  1 5 .89388 1 6 .02809 

Notice that no antiderivative is required for Monte Carlo integration. In fact, if you 
had one, why use an approximation at all? So, generally you can think of Monte Carlo 
integration as an alternative to a deterministic numerical integration method (such as 
the trapezoid rule) . In one dimension, those methods are preferable. But an advantage 
of the Monte Carlo approach is how it scales with dimension. Notice that a Monte 
Carlo estimate of ( 4) requires N points of the form (X; , Y; ) ,  i = I ,  . . . , N so 2N ran
dom values. Similarly, an estimate for the integral in (5) generalized to d dimensions 
requires N points (X�i l ,  . . .  , xJl ) ,  i = 1 ,  . . .  , N so N d random values. On the other 
hand, a numerical approximation using a Riemann sum on a grid with M values in 
each dimension involves M2 points for (4) and Md points for the generalization of 
(5) . Since Md grows exponentially in d, it is potentially a much larger number than 
N d, requiring more time to generate the estimate. This is sometimes called the curse 
of dimensionality. A rule of thumb is that Monte Carlo integration is preferable when 
the dimension is about eight or more. In fact, Monte Carlo integration can provide 
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estimates of integrals that appear virtually impossible otherwise. Suppose X 1 ,  • • •  , X d 
are random variables, possibly not independent, with joint p.d.f. fx1 , • • •  , xd (xi , . . .  , xd) .  
The marginal expectation of X 1 o  i s  the d-dimensional integral 

E[Xd = /_: · · ·  /_: xdx 1 , • . .  , x/XJ , . . .  , xd ) dx1 · · · dxd . 

The support of f may be a d-dimensional hypercube, �d , or some more complicated 
volume. The dimension d might be large (the number of days in the year or obser
vations in a large experiment) . One can always sample from the volume and thereby 
create an estimate of the expected value. 

Final thoughts 

The examples shown here use distributions whose features can be reasonably remem
bered. If you can remember the density and mean of other distributions, you can calcu
late more integrals similarly. Maybe you can extend to variances and higher moments 
too. But remember, not all distributions have finite expected mean or variance-so be 
careful which distributions you use ! Also, all the iterated integrals here had constant or 
infinite limits of integration-no variables. This allows using ideas of independence. 
Unfortunately, not all integrals are so simple. 

What we've seen here is the use of probability to reinterpret some problems from 
calculus. The references below give more information about probability, in general, 
and Monte Carlo methods, in particular. But we could equally consider any topic 
through the lens of a later course. What else can you reinterpret to advantage? 

Acknowledgment. I would like to thank Edward Boone and the anonymous referees for their helpful comments 

that improved this paper. 
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In 1 837 P. G. Lejeune Dirichlet published his celebrated theorem (1], stating that any 
arithmetic progression a ,  a +  b, a +  2b, a +  3b,  . . .  wherein a and b have no common 
factor contains infinitely many prime numbers. All known proofs are difficult, and 
the most readable ones (see, for instance, Serre [3] ) use nontrivial results of complex 
analysis .  It can be shown [ 4, 5] that, in a very precise technical sense, elementary 
proofs are only possible when a2 = 1 modulo b, in particular for a = 1 and a = - 1 .  
Recently, Hillel Gauchman published a simple proof [2] for the case a = 1 .  We show 
here what we believe to be an even simpler proof, using an idea of Gauchman's  [2] 
(the only idea we need, in fact) and a little lemma. To fix the notation, we restate what 
we want to prove. 

THEOREM . If N is any positive integer, there are infinitely many primes of the form 
1 + mN, m = 1 ,  2, . . . . 

Proof Let q1 , • • •  , qr be r primes of the form 1 + mN.  We will find another prime 
of this form. Let p1 , • • •  , Ps be the distinct prime divisors of N. Consider, as in Gauch
man [2] , for k = 1 ,  . . .  , s the polynomials 

.f, (X) = 
XN - 1 = (XN!Pk ) Pk - l + (XNIPk ) Pk -2 + . . .  + 1 . k XNIPk - 1 

Fixing an index k, we can decompose fk (X) into a product of irreducible monic poly
nomials in Z[X] .  Since fk (e2T<i/N ) = 0, one of these irreducible factors, say / (X) ,  
must vanish at e2T<i/N . By a well-known lemma of Gauss, an integral polynomial that 
is irreducible in Z[X] is also irreducible in Q[X],  and therefore / (X) must be the 
minimal polynomial of e2T<i/N over Q. Thus / (X) is the same for every k .  

I f  t i s  a sufficiently large integer, then for c = tp 1 • • • Psqi · · · qr o  we will have 
f (c) � 2. Let q be a prime divisor of f (c) , hence of eN - L it must be different from 
each Pk and each qk . because none of the primes Pk and none of the primes qk divides 
eN - 1 .  Furthermore, by the lemma below, q does not divide any of the cNIPk - 1 .  
This means that eN = 1 (mod q) , whereas cNIPk ¥= 1 (mod q) .  In other words, the 
multiplicative order of c modulo q is exactly N. On the other hand, by Fermat's  little 
theorem, cq- I = 1 (mod q) ;  hence N divides q - 1 ,  which is the same as q = 1 + mN 
for some integer m .  We have proved that, given any number of primes q1 , . . .  , qr of 
the form 1 + mN,  we can find another one. Thus there are infinitely many such primes . 

• 
It remains to state and prove the lemma, that, as noticed by van der Waerden [7] , 

goes back at least to Sylvester [6] . 
LEMMA.  Let c be any integer different from 1 and - 1 , N a positive integer and p 

a prime divisor of N. Let q f= p be a prime divisor of 

Then q does not divide eN I P - 1 .  

eN - 1 
A = ---

cNfp - 1 
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Proof Setting b = cNfp - 1 we have 

A = (b + 1 ) P - 1 = bp- I + (p) bp-2 + . . .  + ( p ) b 1 p - 1 
and therefore, if q were a divisor of b, it would also divide {P� 1 )  = p, which contra
dicts the assumption q i= p . • 

R E F E R E NCES 
I .  P. G. Lejeune Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes 

Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthiilt, 

Abh. Preuss. Akad. Wiss. ( 1 837) 45-8 1 .  (Werke I, 3 1 3-342.) 

2. Hillel Gauchman, A special case of Dirichlet's theorem on primes in an arithmetic progression, this M A G A -

ZINE 74 (200 1 )  397-399. 

3. Jean-Pierre Serre, Cours d 'arithmetique, 2me edition, Presses Universitaires de France, Paris, 1 977. 

4. M .  Ram Murty, Primes in certain arithmetic progressions, J. Madras Univ. 51 ( 1 988) 1 6 1- 1 69. 

5 .  M .  Ram Murty and Nithum Thain, Prime numbers in certain arithmetic progressions, Funct. Approx. Com

ment. Math. 35 (2006) 249-259. 

6 .  James Joseph Sylvester, On the divisors of the sum of a geometrical series whose first term is unity and 

common ratio any positive or negative integer, Nature 37 ( 1 888) 4 1 7-4 1 8 . (Collected papers IV, 625-629.) 

7 .  B .  L. van der Waerden, Elementarer Beweis eines zahlentheoretischen Existenztheorems, J. reine angew. 

Math. 171 ( 1 934) 1 -3 .  

Proof Without Words :  An Arctangent Ident i ty 

If x ,  y > 0 and x2 + y2 
= 1 ,  then 

y 

2a 
2p 

( 1 - x ) ( 1 - y ) n 
arctan -

y
- + arctan -

x
- = 4 .  

1 - x 

1 - y 

y 

arctan C :  y ) = a  

arctan C � x ) = �  

n n 
2a + 2� = 2 -+ a + � = 4 

.li-------------�----------�--------- x 
X 

--HASAN UNAL 
Yildiz Technical University 

lstanbul 342 1 0, TURKEY 
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An integer is called evil if the number of ones in its binary expansion is even and 
odious if the number of ones in its binary expansion is odd. If we look at the integers 
between 0 and 1 5  we find that 0, 3, 5, 6, 9, 1 0, 1 2, 1 5  are evil and that I ,  2, 4, 7, 8, 1 1 , 
1 3 ,  14 are odious. 

Next, we say that if two consecutive integers are evil then this is a pair of evil twins 
and that if two consecutive integers are odious then this is a pair of odious twins. 
Returning to the integers from 0 to 15 we see that {5, 6} and {9, 1 0} are two sets of evil 
twins and that { 1 ,  2 } ,  {7 , 8} and { 1 3 ,  14 } are three pairs of odious twins. We can now 
state the new result of this paper: 

EVIL TWIN THEOREM.  Evil twins alternate with odious twins. 

The terminology of evil and odious is fairly new coming from combinatorial game 
theory [2] , but the theory connected to these numbers has many applications and a long 
history. One of the first results in the area is due to Prouhet [8] . 

If we look at the numbers from 0 to 1 5  we see that the number of evil numbers 
equals the number of odious numbers and that the sum of the evil numbers equals 
the sum of the odious numbers. More surprisingly, the sum of the squares of the evil 
numbers equals the sum of the squares of the odious numbers and the sum of the cubes 
of the evil numbers equals the sum of the cubes of the odious numbers . If we let 0° = 1 
we can write the preceding statements as: 

1 o + 2o + 4o + 7o + go + 1 1 o + 1 3o + 1 4o = oo + 3o + so + 6o + go + 1 0o + 1 2o + 1 5o 

1 1 + 2 1 + 4 1 + 7 1 + 8 1 + 1 1 1 + 1 3 1 + 14 1 = 01 + 3 1 + 5 1 + 6 1 + 9 1 + 10 1 + 1 2 1 + 1 5 1 

1 2 + 22 + 42 + 72 + g2 + 1 1 2 + 1 32 + 1 42 = 02 + 32 + 52 + 62 + g2 + 1 02 + 1 22 + 1 52 

1 3 + 23 + 43 + 73 + 83 + 1 1 3 + 1 33 + 1 43 = 03 + 33 + 53 + 63 + 93 + 1 03 + 1 23 + 1 53 

More succinctly we can write the preceding statements as : 
1 5 :L kj 

= 
k=O 

k is  evil 

1 5 :L kj 
k=O 

k i s  odious 

Prouhet proved the remarkable result: 
PROUHET' S THEOREM.  

k=O k=O 
k is  evil k i s  odious 

for 0 _::: j _::: 3 .  

for 0 _::: j _::: n - 1 .  

In fact Prouhet proved a more general theorem. He looked at integers written in any 
given base b, and then partitioned 0, 1 ,  . . .  , bn 

- 1 according to the sum of their digits 
modulo b. He showed that the sums of the integers raised to the power j in each class 
were equal for any j satisfying 0 _::: j _::: n - 1 .  There have been generalizations of this 
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theorem. Lehmer [5] proved a generalization in 1947 and then Sinha [10] generalized 
it further in 1 972. 

We postpone the proof of Prouhet's Theorem, in favor of introducing the Thue
Morse sequence-a good place to start. 

The Thue-Morse sequence 

For an integer n, we will define a(n) = 1 if n is evil and a(n)  = - 1  if n is odious. 
Then the Thue-Morse sequence is a (O) , a ( l ) ,  a (2) , . . . .  So the Thue-Morse sequence 
begins 

1 ,  - 1 ,  - 1 ,  1 ,  - 1 ,  1 ,  1 ,  - 1 ,  - 1 ,  1 ,  1 ,  - 1 ,  1 ,  - 1 ,  - 1 ,  1 ,  . . . .  

Often we will slightly simplify the notation by omitting the ones and just writing the 
signs; so the sequence will be written as 

+ - -+-++--++-+--+ 

Notice that the sequence has a nice property that after the first term + comes the 
negation of that term - ,  after the first two terms +- comes the negation of those terms 
-+, after the first four terms + - - +  comes the negation -++-.  In general the terms 
from 2n to 2n+ l  - 1 are just the negation of the terms from 0 to 2n - 1 .  This follows 
from the fact that if 0 ::::: k ::::: 2n - 1 then the binary expansion of 2n + k has one more 
1 in its binary expansion than does k (namely it has an extra 1 in the 2n place) and 
so a (k) and a (2n + k) have opposite signs . This property makes it very easy to write 
down the sequence, and will be important later when we come to generating functions . 

The Thue-Morse sequence has several other useful properties and has been used in 
a variety of areas of mathematics. We will briefly discuss some of these. Alloche and 
Shallit [1] give a more complete list of applications and history. 

One important area where the sequence occurs is in the application of symbolic 
dynamics to dynamical systems. Consider the map 

f(x) = 4x ( l  - x) .  

We look at points x E [0, 1 ]  and see what we  can say about the sequence 

x ,  f (x ) ,  j2 (x) ,  J\x) ,  . . .  

where Ji denotes f composed (not multiplied) with itself i times. Now define { - 1  
f3 (x) = � if O ::::: X < . 5  

if  X =  . 5  

if . 5  < X  ::::: 1 .  

That is, f3 tells us whether x is to the left or right of . 5  or equal to . 5 .  To greatly simplify 
things instead of considering our sequence 

we consider the string of - l s  and l s  and possibly a c given by 

f3 (x ) ,  f3 (f (x) ) , f3 (f2 (x) ) ,  {3 (!\x) ) ,  . . . .  
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An amazing fact i s  that for any sequence of - I s  and I s  we can find an x with exactly 
that sequence. The Thue-Morse sequence then shows that there must be a point x 
that is not periodic and not eventually periodic. (Devaney [3, Ch. 1 .6] gives a good 
introduction to symbolic dynamics.) This lack of periodicity was the property that 
Morse exploited in order to prove a result in differential geometry about geodesics 
being recurrent but nonperiodic on certain surfaces of negative curvature [6] . 

A useful fact is that the Thue-Morse sequence contains examples of blocks of sym
bols X such that the block X X also occurs in the sequence. For example, if we take 
X to be + we find in the sequence the block ++; if we take X to be + - we can find 
+-+- as consecutive terms in the sequence. Of course we have to be careful how we 
choose X. If we take X to be ++ we cannot find ++++, because that never occurs . 
The important point is that there do exist some blocks X such that X X occurs in the 
sequence. More interestingly, Axel Thue [11 ,  12] (both reprinted in Nagel [7]) showed 
that there is no block of symbols X such that X X X occurs . This is sometimes referred 
to as saying that the Thue-Morse sequence is cube-free. Max Euwe, the Dutch chess 
grandmaster and mathematician, used this property to show that there could be infinite 
games of chess wherein the same sequence of moves never occurred three times in 
succession [4] . In particular, for us, this cube-free property means that there are no 
evil or odious triplets . 

One important way of proving results about this sequence is by looking at its gen
erating function, which is a formal power series with the terms of the Thue-Morse 
sequence as coefficients . This is what we do next. 

The Thue-Morse generating function 

Notice that ( 1  - x) ( l  - x2) = 1 - x - x2 + x3 and that the coefficients of the poly
nomial on the right are just the first four terms of the Thue-Morse sequence. If we 
take I - x - x2 + x3 and multiply by I - x4 we obtain a polynomial whose first four 
coefficients remain as before, and the coefficients of x4 to x 7 are just the first four co
efficients with the signs reversed. So we end up with a polynomial of degree 7 whose 
coefficients are the first eight terms in the Thue-Morse sequence. Inductively we can 
show, and the reader may wish to check, that 

n- 1 2" - 1 fl ( 1  - x2k ) = L a(k)xk . k=O k=O 
Letting n tend toward infinity, we obtain our generating function 

00 00 fl ( 1  - x2k ) = L a(k)xk . k=O k=O 
Note that we are not interested in the convergence of either the product or the sum. In 
every application we will truncate at a finite stage, but it is convenient not to indicate 
any specific stopping point. 

We now begin our study of twins .  Suppose we multiply both sides of the equation 
above by I + x .  We obtain 

00 00 00 

( 1 + x) flO - x2k ) = ( 1 + x) L: a (k)xk = L: a (k) (x k + xk+ l ) k=O k=O k=O 
00 

= I + L(a (k) + a (k - I ) )xk . k= l 
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Notice that a (k) + a (k - 1 )  will take values of +2, 0 or -2 depending on whether 
k - 1 and k are evil twins, not twins, or odious twins, respectively. This formal infinite 
product is like a generating function for evil and odious pairs . 

For small values of n it is easy to compute ( 1  + x) fl�:� ( l  - x2k )  using a computer 
algebra system. It is suggested that the reader try various examples . For example, 

3 

( 1  + x) IT ( 1  - x2k ) = 1 - 2x2 + 2x6 - 2x8 + 2x 10 - 2x 1 4  + x 1 6 
k=O 

tells us as we observed before that {5 ,  6} and {9 , 10 } are sets of evil twins, and that 
{ 1 ,  2 } ,  {7 ,  8 } ,  and { 1 3 ,  14 } are three pairs of odious twins. 

In the next two short sections we will give proofs of both the theorems stated in the 
introduction. Both involve the generating function of the Thue-Morse sequence. 

Proof that evi l and od ious twins a l ternate 

We consider the evil-and-odious-pairs "generating function" 

00 00 
( 1  + x) IT ( 1 - x2k ) = 1 + �)a (k) + a (k - 1 ) )xk . 

k=O k= l  

As  was stated before, with the exception of  the first term, we know that the coefficients 
are +2, 0, or -2 depending on whether k - 1 and k are evil twins, not twins or odious 
twins. Now 

00 00 00 
( 1  + x) IT ( 1  - x2k ) = ( 1  - x2) IT ( 1 - x2k ) = ( 1  - x2) IT ( 1  - (x2)2k ) 

k=O k= l  k=O 
00 00 

= ( 1 - x2) L a(k) (x2)k = L a(k) ( (x2)k - (x2)k+ I ) 

00 

k=O k=O 

= 1 + L(a (k) - a (k - 1 ))x2k . 
k= I  

( 1 )  

We see that the coefficient of xk i s  zero i f  k i s  odd. So that for { k - 1 ,  k }  to be a pair 
of twins k must be even. (We didn't really need such a complicated argument to deduce 
this as it is clear that if k - 1 is even then its last binary digit must be 0 so a (k - 1 )  and 
a (k) must have opposite signs.) The more interesting conclusion is that {2k - 1 , 2k } is 
an evil pair if and only if a (k) = 1 and a (k - 1 )  = - 1 ;  and {2k - 1 ,  2k }  is an odious 
pair if and only a (k) = - 1  and a (k - 1 )  = + 1 .  This means that as we look along the 
Thue-Morse sequence whenever we see -+ in the k - 1 ,  k positions we know that 
2k - 1 and 2k will be evil twins; and whenever we see +- in the k - 1 ,  k positions 
we know that 2k - 1 and 2k will be odious twins; and there are no other sets of twins. 
Suppose we look along a string that begins with +- and we know that it contains at 
least one other + sign. The next + after the first that we see must be preceded by a 
- . This means that any finite string that begins and ends with +- must contain a -+ .  
Similarly any string that begins and ends with -+ must contain a +- .  So evil twins 
must alternate with odious twins. 
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Prouhet's Theorem 

In this final section we give a proof of Prouhet's theorem, which has been proved in 
many ways. We follow Roberts [9] and Wright [ 13] using difference operators . (Wright 
[13] contains interesting history about this theorem and the connection with the Tarry
Escott problem.) 

Given any polynomial in one variable, P (x) say, let E denote the operator defined 
by EP (x) = P (x + 1 ) .  So E can be thought of as translating the graph of P (x) one 
unit horizontally. For any positive integer m we let Em denote E composed with it
self m times. Thus Em P (x) = P (x + m) .  We also let I denote the identity operator, 
I P (x) = P (x ) .  

The key observation i s  that i f  P (x) i s  a polynomial of degree d then 

(I - Em) P (x) = I  P (x) - Em P (x) = P (x) - P (x + m) 

is a polynomial of degree d - I ,  and that if P (x) is a constant, P (x) = c ,  then 

(I - Em ) P (x) = I  P (x) - Em P (x) = c - c = 0. 

We can now re-write the Thue-Morse generating function using the operator E.  We 
obtain 

n- 1  2" - 1 n (I - E2k ) = L a (k)Ek . 
k=O k=O 

Suppose that P(x) is a polynomial; then 

n- 1 2" - 1  n (I - E2k ) P (x) = L a (k) Ek P (x ) .  
k=O k=O 

Suppose that P (x) has degree d ::; n - 1 and examine the left-hand side: It must be 0 
because each time we operate on P with a term of the product, we reduce the degree 
by one, by the key observation above, finally arriving at 0. We obtain 

2n - 1 2n - l 
0 = L a (k)Ek P (x) = L a (k) P (x + k) . 

k=O k=O 

Letting P (x) = x i ,  for 0 ::; j ::; n - 1 gives 

2" - 1  
0 = L a (k) (x + k)i . 

k=O 

Finally, putting x = 0 and re-arranging completes the proof: 

k=O k=O 
k is  evil k is  odious 

for 0 ::; j ::; n - 1 .  

Acknowledgment. We thank the anonymous referees for their many helpful suggestions.  
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Nat. Kl. Chris. 1 ( 1 9 1 2) 1-67. 

1 3 .  E. M.  Wright, Prouhet's 1 85 1  solution of the Tarry-Escott problem of 1 9 1 0, Amer. Math. Monthly 66 ( 1 959) 

1 99-201 . 

Proof Without Words :  Bernou l l i 's Ineq u a l i ty 

If a > 0, a i= 1, and x > 1, then ax - 1 > x (a - 1) . 

a >  I 

y = a ' 
y 

ml 
, , ' m a +-------,-,..:_---"-""-� 

, 

0 X 

0 < a < 1  

y = a ' 
y 

0 X 

> a - 1 . 
X 
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PROPOSALS 

To b e  considered for publication, solutions should b e  received by july 1 ,  2009. 

1811. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 

Given a connected graph G with vertices v 1 , v2 , . . .  , Vn , let d; , j  denote the distance 
from v; to v j .  (That is, d;, j  is the minimal number of edges that must be traversed in 
traveling from v; to vj . )  The Wiener index W(G) of G is defined by 

W(G) = L di, j ·  
l �.i <j �n 

a. Find the Wiener index for the grid-like graph 

on 2n vertices . 

b. Find the Wiener index for the comb-like graph 

on 2n vertices . 

1812. Proposed by Bob Tamper, University of North Dakota, Grand Forks, ND. 

Let m and n be relatively prime positive integers . Prove that 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. 
Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames lA 500 1 1 ,  or mailed electronically (ideally as a lbT!Y( file) to 

ehj ohnstt!liastate . edu. All communications, written or electronic, should include on each page the reader's 

name, full address, and an e-mail address and/or FAX number. 
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1813. Proposed by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia. 

Let a , b, and c be positive real numbers . Prove that 

1 1 1 3 
--- + + > . 
a ( 1  + b) b ( 1  + c) c ( l  + a) - �( 1  + �) 

1814. Proposed by Michael Goldenberg and Mark Kaplan, The Ingenuity Project, 
Baltimore Polytechnic Institute, Baltimore, MD. 

Let A 1 A2A3 be a triangle with circumcenter 0 ,  and let B1 be the midpoint of A2A3 , 
B2 be the midpoint of A3A � o  and B3 be the midpoint of A 1 A2 • For -oo < t :S oo and 
k = 1 , 2, 3 ,  let Bk . t be the point defined by 0 Bk:t = t 0 Bk (where by Bk , oo we mean 

the point at infinity in the direction of 0 Bk) .  Prove that for any t E ( -oo, oo], the lines 
AkBk , t • k = 1 , 2 , 3, are concurrent, and that the locus of all such points of concurrency 
is the Euler line of triangle A 1 A2A3 • 

1815. Proposed by Stephen J. Herschkorn, Rutgers University, New Brunswick, NJ. 

It is well known that if R is a subring of the ring Z of integers, then there is a unique 
positive integer m such that R = mZ. Determine a similar unique characterization for 
any subring of the ring Q of rational numbers . What is the cardinality of the class of 
all subrings of Q? (We do not assume that a ring has a multiplicative identity. ) 

Q u i ck i es 

Answers to the Quickies are on page 69. 

Q987. Proposed by Scott Duke Kominers, student, Harvard University, Cambridge, 
MA. 

Let A and B be n x n commuting, idempotent matrices such that A - B is invertible. 
Prove that A + B is the n x n identity matrix. 

Q988. Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania. 

Let k and p be positive integers . Prove that 

is true for all positive integers n if and only if k = p = 1 or k = 3 and p = 2. 

So l ut i o n s  

Odd sums February 2008 

1786. Proposed by Marian Tetiva, Bfrlad, Romania. 

Let n ::: 2 be a positive integer and let On = { 1 , 3, . . .  , 2n - 1 } be the set of odd 
positive integers less than or equal to 2n - 1 .  

a. Prove that if m is a positive integer with 3 :S m :::; n2 and m f= n2 - 2, then m can 
be written as a sum of distinct elements from On . 

b. Prove that n2 - 2 cannot be written as a sum of distinct elements of On . 
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Solution by David Nacin, William Peterson University, Wayne, NJ. 
First notice that a set of elements in On sums to k if and only if the complement of that 
set sums to n2 - k. This immediately proves part b, since 2 is not expressible as a sum 
of distinct elements from On . 

We prove part a. by induction on n .  The base case of n = 2 is clear. Now assume 
that with the exception of 2 and n2 - 2, every integer in between 1 and n2 can be 
expressed as a sum of distinct elements of On , We show that with the exception of 2 
and (n + 1 ) 2 - 2, every m between 1 and (n + 1 ) 2 can be written as a sum of distinct 
elements of On+ I · 

If 1 ::; m ::; n2 , m f. n2 - 2 and m f. 2 then m can be written as a sum of distinct 
elements from On , and hence as a sum of distinct elements of On+ I · If m = n2 - 2 and 
n > 2 then 

m = n2 - 2 = (n2 - 2n - 3) + (2n + I ) . ( I ) 

Because n2 - 2n - 3 < n2 - 2 and is f. 2, it can be written as a sum of distinct ele
ments of On . Since 2n + 1 E On+l \ On , it follows from ( 1 )  that n2 - 2 can be written 
as a sum of distinct elements of On+ I · 

If m = (n + 1? ,  then m is the sum of the elements of 0 n+ 1 • This leaves the numbers 
of the form m = n2 + a  for 1 ::; a < 2n + 1 .  By our earlier remarks, it suffices to show 
that 

b = (n + 1 ) 2 - (n2 + a) = 2n + 1 - a 

can be written as a sum of distinct elements of On+ I · However, it is easy to check that 
1 ::; b ::; 2n and b f. 2, and that any such number satisfies either 

or b - 1 E On with b - 1 2: 3 .  

I n  either case i t  i s  immediate that b i s  a sum of distinct elements in On C On+ , . This 
completes the proof. 

Also solved by Michael Andreoli. Michel Bataille (France). Brian D. Beasley, J. C. Binz (Switzerland), Jean 
Bogaert (Belgium), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Cal Poly Pomona Problem Solving 
Group, Robert Calcaterra, John Christopher, CMC 328 Carleton College, Elliot Cohen, Chip Curtis, Joe DeMaio 
and Andy Lightcap, Gregory Dresden, Eric Errthum, John Ferdinands, Dmitry Fleischman, David Gould and Chi
Kwong Li and Victoria Perrigan, G.R.A.20 Problem Solving Group (Italy), Natalio H. Guersenzvaig (Argentina), 
Arup Guha, Russell Jay Hendel, Houghton College Problem Solving Group, Tom Jager, Harris Kwong, Kee- Wai 
Lau (China), Kathleen E. Lewis, Ronald G. Mosier, Northwestern University Math Problem Solving Group, Rob 
Pratt, Gary Raduns, Harry Sedinger, Skidmore College Problem Group, Albert Stadler (Switzerland), Phillip D. 
Straffin, Bob Tamper, S. M. Vaidehi (India), Michael Vowe (Switzerland), Gary L. Walls, Yarning Yu, and the 
proposer. 

A productlsum inequality February 2008 

1787. Proposed by Ovidiu Bagdasar, Babes Bolyai University, Cluj Napoca, Romania. 
Let k and n be positive integers with k ::; n, and let 0 ::;  a 1 ::; a2 • · • ::; an . Prove that (a ,  + az + · · · + an 

) k 
a , az · · · ak + aza3 · · · ak+ l  + · · · + an-k+ l an-k+2 · · · an :S k 

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO. 
Write n = qk + r ,  where q and r are nonnegative integers with r < k .  Then 

::::= (a 1 + ak+ I + · · · + aqk+ l ) (az + ak+2 + · · · + aqk+2) 

· · · (ar + ak+r + · · · + Uqk+r ) (ar+ l + ak+r+ l + · · · + a(q- l )k+r+ l ) 

· · · (ak + azk + · · · + aqk ) ,  
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where the first r factors each have q + 1 terms with successive indices differing by k ,  
and the remaining k - r factors each have q terms with successive indices differing by 
k. By the AM-GM inequality, this product of k factors is less than or equal to (S j k / ,  
where S i s  the sum of these factors . Since S = a1 + a2 + · · · an , the claim i s  proved. 

Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Robert 
Calcaterra, David Gould and Chi-Kwong Li and Victoria Perrigan, Hidefumi Katsuura, Paolo Perfetti (Italy), 
Nicholas C. Singer; Albert Stadler (Switzerland), Marian Tetiva (Romania), Yarning Yu, and the proposer. 

Uniform convergence and continuity February 2008 

1788. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

Let D be a nonempty compact set of real numbers, let { /n } be a sequence of real 
valued functions on D, and let f be a real valued function defined on D. Suppose that 
limn--+oo fn (Xn ) = f (x) for any sequence {xn } in D with Xn -+ x E D. 

a. Must it be  the case that fn -+ f uniformly on D? 

b .  Must i t  be the case that f is continuous on D? 

Solution by Tom Jager, Calvin College, Grand Rapids, MI. 
We prove that f is continuous and that the convergence is uniform. Observe that if 
Unk } is any subsequence of Un } and Xk -+ x in D, then fnk (xk ) -+ f (x) .  Also note 
that the constant sequence defined by xk = x converges to x , so fn (x) -+ f (x) for 
each x in D .  

We first prove that f i s  continuous on  D.  Suppose that Xn -+ x i n  D .  Because 
fn (X J ) -+ f (x J ) , there is a positive integer n 1 with l /n 1 (x J ) - f (x1 ) 1  < 1 /2. Since 
fn (x2) -+ f (x2 ) , there is an integer n2 > n 1 with I /n2 (x2) - f (x2) I < 1 /22 • Con
tinuing in this way we obtain an increasing sequence {nd of positive integers with 
l ink (xk ) - f (xk ) I < 1 /2k . As noted above, fnk (xk ) -+ f (x ) .  It follows that f(xk ) -+ 
f (x) , so f is continuous at each x E D. 

Now assume that the convergence is not uniform. Then there i s  an E > 0 such that 
for each N, there is an n > N and an x E D with l fn (x) - f (x) l :=:: E .  Thus there is 
an increasing sequence {nd of positive integers and a sequence {xd of elements of 
D such that l !nk (xk ) - f (xk ) l  :=:: E for all k. Because D is compact, there is a subse
quence {xkm } of {xd with Xkm -+ x for some x E D. Now by the above observation, 
f (xkm )  -+ f (x) and, because f is continuous, f(xkm )  -+ f (x) .  But this implies that 
I fnkm (xk,. ) - f (xkm )  I -+ 0 and contradicts the fact that I fnk (xk ) - f (xk ) I 2: E for all 
k. We conclude that fn -+ f uniformly on D.  

Also solved by Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Australia), Paul Bud
ney, Robert Calcaterra, Eugene A. Herman, Shoban Mandel (India), Nicholas C. Singer; Bob Tomper; Stuart V. 
Witt, and the proposer. 

A determinant and an inverse 

1789. Proposed by Harris Kwong, SUNY Fredonia, Fredonia, NY. 

For nonzero real numbers a 1 , a2 • . . .  , an , define s = I:�= I 1 /ak and 

t 
t + a2 

t 

where t is a real number with s t =1= - 1 .  Find A - I and det(A ) .  

February 2008 
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Solution by Robert Calcaterra, University of Wisconsin Platteville, Platteville, WI. 
Let I be the n x n identity matrix, B be the n x n matrix with bij = 1 j a j , and D be 
the n x n diagonal matrix with d;, ; = a; . It is easy to check that B2 = s B and that 
A D- 1 = I +  tB . It then follows that 

A D- 1 (I - t ( l  + s t)- 1 B) = (I + tB)  {I - t ( l  + st )- 1 B) 

= I - t ( l  + s t) - 1 B + tB - t2 ( 1  + s t ) - 1  B2 = I . 

Thus, A - 1 = D- 1 (I - t ( l + s t )- 1 B ) .  
To determine the determinant, subtract the last row of A from each of the other rows 

of A .  The result is the matrix 

(ri 
T =  . 

t 

0 

t 

which has the same determinant as A .  For each i ,  1 S i S n - 1 ,  add 

t . 
(- 1 ) - (row ! of T)  to row n of T . 

a; 

The result is an upper triangular matrix S with the same determinant as A and with 

It follows that det(A) = (s t  + 1 )  TI�=I a; . 

1 s i s n - l  
i = n .  

Also solved by Ricardo Alfaro, Michel Bataille (France), Elton Bojaxhiu (Albania) and Enkel Hysnelaj (Aus
tralia), Hongwei Chen, Chip Cunis, Luz M. DeAlba, John Ferdinands, Fisher Problem Solving Group, Dmitry 
Fleischman, David Gould and Chi-Kwong Li and Victoria Perrigan, Russell Jay Hendel, Eugene A. Herman, 
Parviz Khalili, Kim Mcinturff, Eric Pite (France), Rob Pratt, Ken Ross, Nicholas C. Singer; Alben Stadler 
(Switzerland), Jeffrey Stuart, Marian Tetiva (Romania), Bob Tomper; Dave Trautman, Yarning Yu, Chris Zin and 
Samuel Otten, and the proposer. 

A ring of power? February 2008 

1790. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni
versity of New York, Bronx, NY. 

Let R be a ring and assume that for each x E R, 

x + x2 + x 3 + x4 = x 1 1  + x 1 2 + x 1 3 + x2s . 

Prove that there is an integer N > 1 such that for each x E R, we have x = x N . 

Solution by the proposer. 
We show that x = x 127 for each x E R. We first prove the following lemma: 

LEMMA . /fu E R with u2 = 0, then u = 0. 
Proof. By the hypotheses we have u + u2 + u3 + u4 = u 1 1  + u 1 2 + u 1 3  + u28 • Be-

cause all terms in the sum but the first are 0, we conclude u = 0. • 

Now let x E R and set 
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Then v X = X and it follows by  induction that vn X = X for all positive integers n . 
Next, let 

Then W x2 = x and it follows by induction that for positive integers p < q, 

( 1 ) 

Because W E R we have, by hypothesis, 

w + w2 + w3 + w4 = w l 1 + w l 2  + w l 3 + wzs _ 
Multiplying both sides of this expression by x29 and then applying ( 1 )  we obtain 

(2) 

Adding (2) to the equation in the problem statement leads to 

(x2 + x3 + x4) + (x27 + x26 + x2s ) = (x 1 1  + x 1 2 + x 1 3 ) + (x 1 s + x n + x l 6 ) . 

Multiply both sides of this expression by W ,  apply ( 1  ), and rearrange to obtain 

(x + x2 + x3 ) _ (x 1o + x l l  + x l 2) = (x i s + x l 6 + x l 7 ) _ (x24 + x2s + x26) . (3) 

Let P = x + x2 + x3 . Then (3) can be rewritten as P - x9 P = x 14 (P - x9 P), and we 
can deduce by induction that for any positive integer t 

or 

By a similar induction we find that for any positive integers s and t ,  

(4) 

Now set z = P - x 141 P ,  and then set t = 9 and s = 14 .  Then (4) implies that z = x 1 26z 
and then that Pz = x 126 Pz . Thus, 

z2 = (P - x 1 26 P)z = Pz - x 1 26 Pz = 0. 

It follows from the Lemma that z = 0 and hence that P = x 1 26 P ,  that is, 

(5) 

Let Y = x - x 127 and note that (5) can be rewritten as Y + x Y + x2 Y = 0 which 
implies that x Y + x2 Y + x3 Y = 0. Combining these last two equation we find Y = 
x3 Y ,  and it follows by induction that Y = x3r Y for any positive integer r .  let r = 42 
and multiply by x to see x Y = x 1 27 Y. Then 

y2 = (x - x 1 27 ) Y  = x Y - x l 27 y = 0. 

By the Lemma, Y = 0, so x = x 1 27 . 
Also solved by J. C. Binz (Switzerland), Robert Calcaterra, FAU Problem Solving Group, Tom Jager, North

western University Math Problem Solving Group, Nicholas C. Singer. 
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An swers 

Solutions to the Quickies from page 64.  
A987. By the hypotheses we have 

(A + B) (A - B) = A2 - B2 + (BA - AB)  = A2 - B2 = A - B .  

Because A - B i s  invertible, A + B i s  the n x n identity matrix. 

69 

A988. One implication is easy to prove. To prove the other we note that if k = 1 then 
p = 1 .  Thus we consider only the case k ::: 2. In this case we have 

(n (n + 1 ) ) P 1 k + 2k + 3k + . . .  + nk = 
2 

for all positive integers n .  Dividing both sides of the preceding equality by nk+ 1 we 
obtain 

Next let n --+ oo to get 

[ I xk dx = _
1 _ = (!) P . lim (n (n + 1 ) ) P 

lo k + 1 2 n ---+ 00 nk+ l 

It follows that 2p = k + 1 and that (k + 1 ) 2 = 2k+ 1 . It i s  straight forward to show that 
the positive solutions of this equation are k = 1 and k = 3 .  This completes the proof. 

To appear i n  The College Mathema tics journal, March 2 009 
Articles 

An Independent Axiom System for the Real Numbers, by Greg Oman 
CORDIC: How Hand Calculators Calculate, by Alan Sultan 
Topology Explains Why Automobile Sunshades Fold Oddly, by Curtis Feist 

and Ramin Naimi 
Lobb's Generalization of Catalan's Parenthesization Problem, by Thomas Koshy 
Eighty-eight Thousand, Four Hundred and Eighteen (More) Ways to Fill Space, 

by Anderson Norton 
A "Paperclip" Approach to Curvature, Torsion, and the Fn!net-Serret Formulas, 

by Ulrich A. Hoensch 

Classroom Capsules 

Winning at Rock-Paper-Scissors, by Derek Eyler, Zachary Shalla, 
Andrew Doumaux, and Tim McDevitt 

Proving that Three Lines Are Concurrent, by Daniel Maxin 



REVIEWS 

PAUL j. CAMPBELL, Editor 
Beloit College 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Watkins, John J., Across the Board: The Mathematics of Chessboard Problems, Princeton Uni
versity Press, 2004; x + 257 pp, $42; 2007, $20.95 (P). ISBN 0-691-11503-6; 0-691-13062-0. 

I would be happy to recommend this book to you, even if it did not contain the definitive 
theorem by this MAGAZINE's editor Allen Schwenk telling exactly when a rectangular board 
has a knight's tour, or a paragraph urging you to read a paper that I wrote half a lifetime ago. 
Beware, though: The book is not about traditional chess problems but solely about mathematical 
problems involving the board itself, with generalizations to nonrectangular shapes and higher 
dimensions (torus, cylinder, Klein bottle). A major focus is knight's tours, including their use 
in constructing magic squares. Other topics include problems concerned with domination (how 
few of a chess piece can command every square) and independence (how many pieces can 
be placed without attacking one another-e.g., the Eight Queens Problem). Also featured are 
paving boards with dominoes and polyominoes, and (generalizing the checkering of the board) 
Latin squares and Graeco-Latin squares. Each chapter has problems with solutions. The book 
is an easy and entertaining read that shows numerous paths into various branches of discrete 
mathematics and graph theory. 

Borwein, J. M., E. M. Rocha, and J. F. Rodrigues, Communicating Mathematics in the Digital 

Era, A K Peters, 2008; xii + 325 pp, $49. ISBN 978-1-56881-410-0. 

Do you and your colleagues send papers to arXiv (http://arxiv.org/)? Will your institu
tion pay page charges to publish your works? Have you been offered (as I was last year) the 
"opportunity" to pay a publisher for others to have "open access" to a paper of yours? And 
who should pay for that? The mechanisms and technologies of dissemination of mathematical 
and scientific knowledge are in flux. This volume gives some snapshots of ideas, projects, and 
insights. Notable is the essay by John Ewing of the American Mathematical Society, "The dig
ital downside," in which he cites problems that arise from the "human frailties of carelessness, 
greed, myopia, dogmatism, and infatuation." 

Borwein, Jonathan, and Keith Devlin, The Com puter as Crucible: An Introduction to Experi

mental Mathematics, A K Peters, 2009; xi+ 158 pp, $29.95 (P). ISBN 978-1-56881-343-1. 

This is a book full of astonishments, wondrous and unlikely results that Ramanujan would have 
been proud to find. One prosaic example: A group of mathematicians "guessed" that 

1111 
d xdy 2n 

4 = 8 log ( l + .J3)- 4 log 2- -. 
o o J1 + x2 + y2 3 

The guess was based on experience that related integrals involve combinations of log ( ! + .J3 ), 
log 2, and n. The group let a computer algebra system find the combination indicated by com
paring numerical evaluation of both sides of the equation to 12 decimal places (and then they 
confirmed equality to 20 places). The book begins with an apologia for experimental mathemat
ics, followed by experiments in calculating digits of n, "identifying" a number, closed form for 
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hypergeometric functions and zeta function values, finding the limit of a sum, and much more. 
Crucial tools are the "3Ms" (Mathematica, Maple, Matlab), Sloane's On-Line Encyclopedia 
of Integer Sequences (http: I /www. research. att. comrnj as/ sequences/ index. html), the 
Inverse Symbolic Calculator (http: I /ddri ve. cs. dal . carisc/standard. html -this URL 
is a correction to the one given on p. 31), and serendipity. Each chapter includes "Explorations" 
for the reader, with "Answers and Reflections" at the back of the book. One chapter, entitled 
"The Computer Knows More Math than You Do," shows how explorations with a computer 
algebra system can lead you to learn about the Lambert W function, the HeunG function, and 
more intricacies and wonders. 

Gray, Jeremy, Plato's Ghost: The Modernist Transformation of Mathematics, Princeton Univer
sity Press, 2008; viii+ 515 pp, $45. ISBN 978-0-691-13610-3. 

You no doubt have some sense of modernism, as in modern art, modem music, and modem 
literature, as they developed around the turn of the 20th century. Author Gray proposes in detail 
an interpretation of mathematical developments of that era as having followed the same spirit. 
His definition of modernism: "an autonomous body of ideas, having little or no outward refer
ence, placing considerable emphasis on formal aspects . . . .  " Gray follows the progress through 
stages of "modernization" by following the threads of geometry, analysis, algebra, and founda
tions, from "before modernism" to the 1920s and the death of Hilbert's program, by which time 
modernism had "won." And today? "The most visible failing in the present situation concerns 
the question of what mathematics actually is . . . .  There is not a vision of mathematics as an 
enterprise to which a large audience can relate." 

Coe, Penelope A., A Handbook: Mathematical Thinking and the Structure of Proofs, CMT 
Publishers, 2008; xii + 402 pp, $22 plus shipping from the author, 112 Hazelmere Rd., New 
Britain, CT 06053-2116, dr-coeCQhotmail . com. No ISBN. 

This book is intended not as a textbook but as a handbook for students in upper-level mathe
matics courses. It has valuable advice about how to: read mathematics (read in words without 
citing the letter symbols used), look for overall structure, state a theorem in good rhetoric (with 
examples of good and bad), and lay out a proof on the page. The book is distinguished from 
the many others by clever choice of typography and exceptionally well-thought-out layout that 
emphasize and implement its principles, including insertion of reasons between steps of deriva
tions. 

Robson, Eleanor, Mathematics in Ancient Iraq: A Social History, Princeton University Press, 
2008; xxvii + 441 pp, $49.50. ISBN 978-0691-09182-2. 

Lost to contemporary U.S. consciousness about Iraq is any sense of the origins of civilization
and origins of mathematics-there. But the names Iraq, Sumer, Babylonia, and Mesopotamia 
evoke a culture where 5,000 years ago there arose arithmetic and accounting, not to mention the 
base-60 system that remains part of our measurement of time and angles. Author Robson deals 
admirably with an enormous scope (more than 3,000 years, with roughly equal space devoted to 
each 500-year epoch); numerous sources (950 published clay tablets, all of which are available 
at a single Website); and the cultural context (social history, an ethnomathematical approach). 

Madison, Bernard L. (ed.), Assessment of Student Learning in College Mathematics: Towards 

Im proved Programs and Courses, Association for Institutional Research, 2006; ii + 181 pp, 
$30 ($25 to AIR member or MAA member). No ISBN. Steen, Lynn Arthur (ed.), Su p porting 

Assessment in Undergraduate Mathematics, MAA, 2006; vii + 239 pp, free to MAA members 
or free with copy of Madison book. ISBN 0-88385-820-7. Available online at http: I /www. 

maa.org/saum/cases/wel come.html. 

These two volumes detail case studies of assessment of courses for various audiences in math
ematics programs at a variety of institutions. The lesser-known first volume contains "more 
extensive and detailed" case studies of assessment programs that are "more mature," with 
some overlap with institutions in the second volume. Additional case studies are at http: 

//www.maa.org/saum/new_case.html. 



N E W S  A N D L E T T E R S 

68th An n u a l  Wi l l i a m  Lowe l l Putnam 
Math emati c a l  Com peti t ion  

Editor 's Note: Additional solutions will b e  printed i n  the Monthly later i n  the year. A 

question for our readers : Do you enjoy seeing these solutions in our February i ssue, or 

would the space be better used for more Notes and Articles? 

PROBLEMS 

Al. Let f :  JR2 -+ JR. be a function such that f (x ,  y) + f(y , z) + f (z , x )  = 0 for a l l  real 

numbers x ,  y , and z . Prove that there exists a function g : JR. -+ JR. such that f (x , y ) = 
g (x) - K (Y)  for all real numbers x and y .  

A2. Alan and Barbara play a game i n  which they take turns filling entries o f  an initially 

empty 2008 x 2008 array. Alan plays first. At each turn, a player chooses a real number 

and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if  

the determinant of the resulting matrix is  nonzero; Barbara wins if it is zero . Which player 

has a wi nning strategy? 

A3. Start with a finite sequence a 1 , a2 , . . .  , an of positive integers. If possible, choose 

two indices j < k such that aj does not divide ak , and replace aj and ak by gcd (aj , ak ) 
and Icm (a j ,  ak ) ,  respectively. Prove that if this process is repeated, it must eventually stop 

and the final sequence does not depend on the choices made. (Note : gcd means greatest 

common divisor and Icm means least common multiple . )  

A4. Define f : JR. -+ JR. by 

f (x )  = { :f (ln x )  

Does L;�1 1 /  f (n )  converge? 

if x :::; e ,  
i f  x > e .  

AS. Let n :=:: 3 b e  a n  integer. Let f (x )  and g (x )  b e  polynomials with real coefficients 

such that the points (f ( l ) ,  g ( l ) ) ,  (f (2) , g (2) ) ,  . . .  , (f (n ) ,  g (n ) )  in JR2 are the vertices of 

a regular n -gon in counterclockwise order. Prove that at least one of f (x)  and g (x)  has 

degree greater than or equal to n - 1 .  

A6. Prove that there exists a constant c > 0 such that in every nontrivial finite group 
G there exists a sequence of length at most c log I G I with the property that each element 

of G equals the product of some subsequence. (The elements of G in the sequence are 

not required to be distinct. A subsequence of a sequence is obtained by selecting some of 

the terms, not necessarily consecutive, without reordering them; for example, 4 , 4 , 2 is a 

subsequence of 2, 4 , 6, 4 , 2, but 2 , 2, 4 is not . )  

Bl.  What is the maximum number of rational points that can lie on a circle in JR2 whose 

center is not a rational point? (A rational point is  a point both of whose coordinates are 

rational numbers.) 

72 



VOL.  82 , NO. 1, F E B R UARY 2 009 73 
B2. Let Fo (x) = ln x .  For n � 0 and x > 0, let Fn + l  (x ) = j�r Fn (t) dt . Evaluate 

. n !  Fn ( l ) 
hm . n -+ oo  In n 

B3. What is the largest possible radius of a circle contained in a 4-dimensional hypercube 

of side length l ?  

B4. Let p be a prime number. Let h (x) be a polynomial with integer coefficients such that 

h (O) , h ( l ) ,  . . .  , h (p2 - l )  are distinct modulo p2 . Show that h (O) , h ( l ) ,  . . .  , h (p3 - l )  
are distinct modulo p3 . 

B5. Find all continuously differentiable functions f :  JR. ---+ JR. such that for every rational 

number q ,  the number f (q) is rational and has the same denominator as q .  (The denomi
nator of a rational number q i s  the unique positive integer b such that q = ajb for some 

integer a with gcd(a , b) = l . ) 

B6. Let n and k be positive integers. Say that a permutation a of { l ,  2 ,  . . .  , n }  is k-limited 
if Ia ( i )  - i I :S k for all i .  Prove that the number of k-limited permutations of { I ,  2, . . .  , n }  
i s  odd i f  and only i f  n = 0 or 1 (mod 2k + 1 ) .  

SOLUTIONS 

Solution to Al. Let ( *) denote the given functional relation for f and fix  any a E 
R Then from (*) ,  f (x , y ) + f (y , a) + f (a ,  x )  = 0, so f (x , y ) = - f (a , x ) - f (y , a ) .  

Let g (x )  = f (x ,  a ) .  Then f (x , y ) = - f (a ,  x ) - g (y) ,  s o  it's enough t o  show g (x )  = 

- f (a , x ) .  From (*) for y = z = a, we get f (x , a ) + f (a , a ) + f (a ,  x )  = 0, so g (x )  = 

- f (a , a ) - f (a ,  x )  and it's enough to show f (a ,  a) = 0. To do so, take x = y = z = 0 
in ( *) to get 3 f (a , a) = 0, and the result follows .  

Solution to A2. Barbara should win .  Here 's a winning strategy for her: Once Alan places 

an entry on his first move, pick a different column and place the same number in that 

column, in the same row as Alan's  entry. Call these two columns the relevant columns 

and the other 2006 columns the irrelevant columns. From now on, every time Alan plays 

in an irrelevant column, do so as well. (Because there is an even number of entries in 

the irrelevant columns, this can be done. )  Every time Alan moves in one of the relevant 

columns, duplicate that move in the same row of the other relevant column. At the end, the 

relevant columns will be equal, so the determinant will be 0, and Barbara will win. 

Solution to A3. At any stage in the process, consider the number N of ordered pairs 

(a , b) for which a precedes b in the sequence and a does not divide b. When (aj , ak ) 

is replaced by (gcd(aj , ak ) ,  lcm (aj , ak ) ) ,  a straightforward case analysis shows that the 

number N always decreases as long as a 1 does not divide ak . [If x precedes both a J and ak 
and divides both, it will also divide both gcd(aJ , ak ) and lcm(aj , ak ) .  If x divides just one 
of a J , ak , it will certainly divide lcm(a 1 , ak ). Similar considerations hold for x between a J 
and ak and for x beyond ak . So the number of ordered pairs counted by N goes down by at 

least 1 ,  since gcd(a1 , ak ) does divide lcm(a1 , ak ) . ] Therefore, the process must stop, and 

at that stage each term in the sequence will divide its successor. 
For any given prime p and any exponent k =::: 0, the number of terms x in the sequence 

for which pk 
lx  is unaffected by the process. Thus in the final sequence we know exactly 

which terms (consecutive backwards from the end) are divisible by pk . Because this is true 

for all p and k, the terms of the final sequence are completely determined. 
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Solution to A4. No. The partial sums of the series are increasing, s o  the question is 

whether they are bounded. Let e 1 = e, ez = ee , e3 = eee ,  . . .  , ek = eek- l  and let N1 = 

Le d = 2, Nz = LezJ , . . .  , Nk = Lek J . Then 

X 

x ln x  

f (x )  = x ln x ln(ln x )  

x :S e , , 

e ,  < x :S ez , 

ez < x :S e3 , 

where Jn (k) denotes the composition of k "factors" ln. Therefore 

Nk 1 � ek 1 
-- > -- dx ?; f (n )  - 1 f (x)  

= - dx + -- dx + · · · + dx , 
fe l 1 1 ez 1 1ek 1 

1 x e 1 x ln x ek- l x ln x · · · ln(k- 1 l (x ) 

= ( 1  - 0) + ( 1  - 0) + . . .  + ( 1  - 0) = k. 

So the partial sums are unbounded, and the series diverges .  

Solution to AS.  Consider the "difference" vectors v1 = (/ (2) - f ( l ) ,  g (2) - g ( l ) ) ,  
v z  = (/(3) - f (2) , g (3) - g (2) ) ,  . . .  , Vn - 1 = ( f (n) - f (n - 1 ) ,  g (n)  - g(n - 1 ) ) .  

Each of these vectors i s  obtained from the previous one b y  rotating through 2n I n .  There

fore, thi s  is also true of the "second difference" vectors w, = vz - v, , wz = V3 - v2 , 
. . .  , Wn -2 = Vn - 1 - Vn -2 , and we can continue in this way. Because two vectors that are 

rotated from each other through 2n In  can never be equal, none of the vectors formed in 

this process can be 0. The process continues (with one fewer vector at each step) until we 

get the (n - l ) st difference vector. If both polynomials f (x ) ,  g (x )  had degree :S n - 2, 
the (n - l ) st difference vector would be 0, a contradiction. 

Solution to A6. The idea is that the greedy choice of each successive element (the choice 

maximizing the set of products reached so far) does at least as well as the random choice. 

Notation : If P � G and g E G, let Pg := { pg I p E P} and p - I g : =  {p- 1 g I p E P } .  Let 

n = I G I .  

LEMMA 1 .  If P � G and g is chosen randomly from G ,  then the average size of P U 
Pg is I P I + I G  \ P I · I P I ! n = 2 1 P I - I P 1 2 ln .  

Proof of Lemma. Any particular h E G belongs to  P g for I P - 1 h I  = I P I choices of  g ,  
s o  the probability that a particular h E G belongs to P g is I P I  In .  Therefore, the expected 

number of elements of G \ P that lie in Pg is I G  \ P I · I P I  l n .  • 

Let Po : =  { 1 }  � G .  For i � 1 ,  define s; E G and P; � G inductively as follows :  choose 
s; E G so as to maximize the size of P; := P; - J U P; - J S; . Note that P; is exactly the set 

of products obtained from subsequences of S J , . . .  , s; . By the Lemma, I P; I � 2 1 P; _ 1 I -
I P; _ 1 1 2 In .  Equivalently, the numbers a; := 1 - I P; I I  n satisfy a; :S ctf_ 1 • We have ao = 

I - I In < e- 1 /n
, so Cim < e_2m In . Let m be the smallest integer such that 2m � n log n .  

Then Cim < e- log n = l i n ,  so I Pm I > n - 1 .  Thus Pm = G ,  so the sequence S J , . . . , Sm has 
the required property. Also, m = 0 (log n ) ,  so the sequence has length at most c Jog 1 G I for 



VO L. 82, NO. 1, F E B R UA RY 2009 75 

a suitable constant c .  [See L. Babai and P. Erdos, Representation of  group elements as  

Short Products, Ann. Discrete Math. 12 ( 1 982) 27-30.] 

Solution to Bl. The answer is  2. This is  attained by the circle having center ( ../2, 0) and 

radius .J3, which passes through (0, 1 )  and (0, - 1 ) .  
Suppose that a circle with nonrational center passes through three distinct rational points 

P1 , Pz , P3 . Let L 1  be the perpendicular bisector of segment P1 Pz , and let Lz be the per

pendicular bisector of segment P2 P3 . If L 1  and Lz were parallel, then P1 Pz and Pz P3 
would be in the same line, contradicting the fact that a line can intersect a circle in at most 

two points. Thus L 1  and Lz meet at the center of the circle. Elementary analytic geometry 

shows that L 1  and Lz are defined by linear equations with rational coefficients, and solv

ing this system of two equations shows that the center is  a rational point, contradicting the 

hypothesis.  

Solution to B2. The limit is  - 1 .  Computing Fn (x) for the first few n suggests that for 

each n ::=: 0 there exists CXn E lR such that Fn (x) = �� ln x - CXnXn for all x > 0. We prove 

this by induction. For n = 0, it holds with ao : =  0. If it holds for a given n ,  then integration 

by parts yields 

Fn+ l  (x) = J Fn (X) dx = J ( :� ln x - CXn Xn) dx 

xn+ l  f xn f 
= ln x - dx - a xn dx 

(n + 1 ) !  (n + 1 ) !  
n 

= ln x - + __ n_ xn + l  + C  
xn+ l  ( 1 a ) 

(n + 1 ) !  (n + 1 ) !  (n + 1 )  n + 1 

for some constant C .  Taking the limit as x � o+ shows that C = 0, so the inductive step 

holds with 

CXn 1 
CXn+ l  = 

n + 1 
+ 

(n + 1 ) !  (n + 1 )  

Hence (n + 1 ) !  CXn+ 1 = n !an + n� 1 , so by induction we obtain 

1 1 
n !  CXn = Hn = 1 + - + · · · + - for n 2: 1 .  

2 n 

Comparison with Jt f dt shows that Hn - ln n is bounded as n � oo. Therefore, 

lim 
n ! Fn ( 1 )  = lim 

n! (-an ) 
= lim -

Hn 
= - 1 .  

n-+ oo ln n n-+ oo ln n n-+ oo  ln n 

Solution to B3. The answer is ../2;2. The circle can be parametrized as 

{c + v cos t + w sin t I t  E [0, 2n ) }  

for some c = (c1 , Cz , c3 , q ) ,  v = (vi , vz , v3 , v4) ,  w = (W I ,  wz , W3 , w4) E IR4 
with v and 

w orthogonal and of equal length. Let ( R, 0) be the polar coordinates for ( w 1 , v 1 ) ,  so 

that (v 1 , w 1 )  = (R sin O ,  R cos O ) .  Then the first coordinate in the parmetrization is c 1 + 
R sin(t + 0) .  If this is to lie in [0, 1 ] ,  we must have I R I  :S: 1 /2, so Vf + Wf :S: 1 /4. Sum

ming the analogous inequalities yields l v l 2 + l w l 2 :S: 1 ,  so the radius I v i  = l w l  is  at most 
.JT72 = ../2;2. Equality is attained for c = 0, v = ( 1 /2, 1 /2 ,  0, 0) , w = (0, 0,  1 /2 ,  1 /2) . 
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Solution to B4. Suppose not; then there exist a and b with 0 :;: a < b < p3  such that 

h (a )  = h (b) mod p3 . B y  assumption, h induces an injection Z/ p2Z --+  Z/ p2Z, so a = b 
mod p2 . We have 

h (a + x )  = h (a)  + h ' (a)x + x2d (x ) 

for some d (x )  E Z[x ] .  Take x = p :  then because h (a + p) 'I= h (a)  mod p2 , p does not 

divide h ' (a ) .  Now take x = b - a :  then x = p2c for some c E { 1 ,  . . .  , p - 1 } , so 

contradicting the fact that h' (a) and c are not divisible by p .  

Solution t o  BS. I f  t E Z ,  then the functions f (x ) = x + t and f (x ) = -x + t satisfy 

the conditions. We now assume that f satisfies the conditions and prove that f (x ) is one 

of these functions . 

Let q E Q. If n is a positive multiple of the denominator of q ,  then nf (q ) and nf (q + � )  
are integers, s o  f(q+�};;f(q )  E Z. As n --+  oo through multiples of the denominator of q ,  

· f(q+I_  )-f (q) I I the quotients l';n converge to f (q ) ,  so f (q) E Z. If r E lR, then we can choose 

q11 E Q converging to r .  Since f' is continuous, f' (r) = lim11 _, 00  f' (q11 ) ,  and because this 

is a limit of integers, f' (r) E Z. Since f' is a continuous function taking integer values, 

the Intermediate Value Theorem implies f' is a constant. Hence f(x )  = sx + t for some 

s E Z. Also, t = f (0 / 1 )  has denominator 1 ,  so t E Z. If s = 0, then f ( 1  /2) has the wrong 

denominator. If l s i > 1 ,  then f ( l js )  has the wrong denominator. Thus s = ± I.  

Solution to B6. Notation: [a , b] = {a ,  a +  1 ,  . . .  , b } .  Let Sn .k denote the set of k
limited permutations of [ I ,  n ]  and set Pn . k  = { a  E Sn .k I a ( [2 ,  k + 1 ] )  £: [ k + 2 ,  2k + I ] } .  

(i) I f  2 :S n :S 2k, Pn .k = Sn ,k · 

Proof 1 [2 , k +  l ] n [ l , n ] l  > l [k + 2, 2k +  l ] n [ 1 , n ] l .  

(ii) If 2k + 1 :S n and a E Sn , k  \ P11 , k ,  then a stabilizes [ 1 ,  2k + 1 ]  whereupon it induces 

the unique involution fixing 1 and switching i and i + k for 2 :;: i :;: k + 1 .  

Proof That a ( [ 1 ,  2k + 1 ] )  = [ 1 ,  2k + 1 ]  follows from the fact that a ( I )  U a ( [k + 2, 
2k + 1 ] ) must fill the positions in [ 1 ,  k + 1 ] .  The specified form of a l l 1 . 2k+ l l  follows 

by induction on i .  

(iii) I P11 ,k l is even. 

Proof In fact, we exhibit a pairing of the elements of Pn , k ·  For a E Pn , k .  let j :=::: 2 be 

minimal such that a (j )  :S k + 1 .  Define a' E Sn ,k by 

l a (j )  if i = 1 ,  
a ' ( i )  = a ( l )  if i = j ,  

a (i )  otherwise. 

Then a' E Pn , k  and a" = a .  

We now establish the required result by induction on n .  For n :S 1 ,  I Sn , k  I is I and therefore 

odd, while for 2 :S n :S 2k, I Sn , k  I is even by virtue of  ( i )  and (iii). For the inductive step, 

we note, using (ii), that when n :=::: 2k + I ,  there is a bijection f : Sn , k  \ Pn ,k --+ Sn-2k- l , k  
whereby f(a ) (i ) = a (i + 2k  + 1 ) - 2k - 1 ,  and so, b y  (iii), I Sn . k l  = 1 Sn-2k- 1 , k l  (mod 2) . 
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Letter to the Ed i tor :  I sosce l es D i ssect i o n s  

I enjoyed Des MacHale 's  "Proof Without Words :  Isosceles Dissections" i n  the December 

2008 issue of the MAGAZINE. However, his third claim (that a triangle can be dissected 

into two isosceles triangles if and only if one of its angles is three times another or if the 

triangle is right angled) is incorrect. There is a third case to consider. 

Consider an acute !::::.ABC, two of whose angles are x and 2x ( 0 < x < 45°) ,  as il

lustrated in FIGURE 1 a. Such a triangle can be dissected into two isosceles triangles as 

follows.  As in FIGURE 1 b, draw the cevian CD equal in length to BC so that !::,.BCD is 

isosceles . It now follows that LACD = x ,  so that !::::.ACD is also isosceles .  

c c 

D 

Figure 1 A triang le  with one ang le  twi ce a nother  

Two familiar members of this family are the triangles with x = 30° ( which makes 

!::::.ABC a right triangle) and x = 36° (when !::::.ABC is itself isosceles) .  Mac Hale also showed 

how every acute triangle can be dissected into three isosceles triangles .  The construction 

in FIGURE 1 can be extended to show that every isosceles obtuse triangle can also be 

dissected into three isosceles triangles,  as in FIGURE 2. 

Figure 2 An obtuse i sosce les tr iang le  d i ssect ion 

-ROGER B. NELSEN 
Lewis and Clark College 

Portland, OR 972 1 9  
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